Online citations, reference lists, and bibliographies.
← Back to Search

NAC Covers Ribosome-associated Nascent Chains Thereby Forming A Protective Environment For Regions Of Nascent Chains Just Emerging From The Peptidyl Transferase Center

S. Wang, H. Sakai, M. Wiedmann
Published 1995 · Medicine, Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
We demonstrate that nascent polypeptide-associated complex (NAC) is one of the first cytosolic factors that newly synthesized nascent chains encounter. When NAC is present, nascent chains are segregated from the cytosol until approximately 30 amino acids in length, a finding consistent with the well-documented protease resistance of short ribosome-associated nascent chains. When NAC is removed, the normally protected nascent chains are susceptible to proteolysis. Therefore NAC, by covering COOH-terminal segments of nascent chains on the ribosome, perhaps together with ribosomal proteins, forms a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. Since NAC is not a core ribosomal protein, the emergence of nascent chains from the ribosome may be more dynamic than previously thought.
This paper references
10.1096/fasebj.7.1.8422979
tRNA‐rRNA interactions and peptidyl transferase
H. Noller (1993)
10.1016/0092-8674(93)90640-C
The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation
K. Crowley (1993)
10.1016/0022-2836(67)90301-4
Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding.
L. Malkin (1967)
Formation of an intrachain disulfide bond on nascent immunoglobulin light chains.
L. W. Bergman (1979)
10.1126/SCIENCE.7973701
How ATP drives proteins across membranes.
W. Wickner (1994)
10.1016/S0076-6879(71)20047-1
[45] Isolation of mammalian ribosomal subunits active in polypeptide synthesis
T. Staehelin (1971)
Solution of the ribosome: how the ribosome
K. H. Nierhaus (1993)
Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli.
K. Nagai (1984)
10.1016/S0091-679X(08)61683-0
Transcription of full-length and truncated mRNA transcripts to study protein translocation across the endoplasmic reticulum.
R. Gilmore (1991)
10.1016/0968-0004(89)90166-7
Challenging the three-dimensional structure of ribosomes.
A. Yonath (1989)
10.1016/0092-8674(84)90520-8
Protein translocation across the endoplasmic reticulum
P. Walter (1984)
10.1146/ANNUREV.CB.08.110192.001213
Regulation of translation in eukaryotic systems.
M. Kozak (1992)
10.1146/ANNUREV.BI.62.070193.002411
New photolabeling and crosslinking methods.
J. Brunner (1993)
10.1016/0092-8674(92)90069-O
A dynamic model of the mitochondrial protein import machinery
N. Pfanner (1992)
Tricine-sodinm dodecyl sulfate-poly
H. ScMgger (1987)
A tunnel in the large ri
A. Yonath (1987)
10.1016/0968-0004(94)90169-4
Molecular chaperones in protein folding: the art of avoiding sticky situations.
F. Hartl (1994)
Glycosylation of ovalbumin nascent chains. The spatial relationship between translation and glycosylation.
C. Glabe (1980)
10.1002/j.1460-2075.1994.tb06713.x
Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane.
W. Mothes (1994)
10.1038/309810A0
Generation of β-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli
K. Nagai (1984)
10.1016/0092-8674(93)90476-7
Protein translocation across the endoplasmic reticulum: A tunnel with toll booths at entry and exit
R. Gilmore (1993)
10.1016/S0006-291X(74)80498-5
N-terminal acetylation of the nascent chains of α-crystallin
G. J. Strous (1974)
Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory
E Harlow (1989)
10.1016/0014-5793(93)81803-8
Cotranslational heme binding to nascent globin chains
A. Komar (1993)
N-terminal acetylation of the nascent chains of alpha-crystallin.
G. Strous (1974)
10.1016/0022-2836(71)90043-X
Collagen polysomes: site of hydroxylation of proline residues.
E. Lazarides (1971)
10.1038/370421A0
Cradle at the ribosome
W. Neupert (1994)
10.1038/370434A0
A protein complex required for signal-sequence-specific sorting and translocation
B. Wiedmann (1994)
Glycosylation of Ovalbumin Nascent Chains
C. Glabe (1980)
10.1128/MMBR.56.2.291-315.1992
Mechanism and regulation of eukaryotic protein synthesis.
W. Merrick (1992)
10.1016/0014-5793(88)81434-0
Does the channel for nascent peptide exist inside the ribosome? Immune electron microscopy study
L. Ryabova (1988)
10.1111/j.1365-2958.1993.tb01726.x
Solution of the ribosome riddle: how the ribosome selects the correct aminoacyl‐tRNA out of 41 similar contestants
K. Nierhaus (1993)
A protein
B. Wiedmann (1994)
10.1038/319693A0
Location of exit channel for nascent protein in 80S ribosome
R. Milligan (1986)
10.1016/0022-2836(68)90307-0
On the release of the formyl group from nascent protein.
J. Adams (1968)
Isolation of mammalian ribosomal
T. Staehelin (1971)
Purification of ribosomes from Escherichia coli
C. G. Kurland (1971)
10.1146/ANNUREV.BI.54.070185.002451
Evolving ribosome structure: domains in archaebacteria, eubacteria, eocytes and eukaryotes.
J. Lake (1985)
N-terminal acetylation
G. J. Strous (1974)
10.1073/PNAS.79.10.3111
Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain.
C. Bernabeu (1982)
10.1016/S0076-6879(83)96008-1
Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA.
R. Jackson (1983)
10.1083/JCB.45.1.130
CONTROLLED PROTEOLYSIS OF NASCENT POLYPEPTIDES IN RAT LIVER CELL FRACTIONS
G. Blobel (1970)
10.1016/S0091-679X(08)61684-2
Probing the molecular environment of translocating polypeptide chains by cross-linking.
D. Görlich (1991)
10.1038/227672A0
Role of Methionine in the Initiation of Haemoglobin Synthesis
R. Jackson (1970)
10.1126/SCIENCE.3576200
A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction.
A. Yonath (1987)
10.1016/S0076-6879(83)96007-X
Cell-free translation of messenger RNA in a wheat germ system.
A. Erickson (1983)
Ovalbumin: a secreted
R. D. Palmiter (1978)
10.1073/PNAS.75.1.94
Ovalbumin: a secreted protein without a transient hydrophobic leader sequence.
R. Palmiter (1978)
10.1038/227680A0
Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4
U. Laemmli (1970)
10.1083/JCB.108.3.789
Nascent secretory chain binding and translocation are distinct processes: differentiation by chemical alkylation
C. Nicchitta (1989)
Challenging the three-dimensional
A. Yonath (1989)
10.1016/S0076-6879(71)20041-0
[39] Purification of ribosomes from Escherichia coli
C. Kurland (1971)
10.1083/JCB.96.5.1471
Nascent polypeptide chains exit the ribosome in the same relative position in both eucaryotes and procaryotes
C. Bernabeu (1983)
Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryofic messenger RNA
R. J. Jackson (1983)
10.1016/0003-2697(87)90587-2
Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.
H. Schägger (1987)
10.1126/SCIENCE.1332192
Transport of proteins across the endoplasmic reticulum membrane.
T. Rapoport (1992)



This paper is referenced by
10.1134/S0006297910130018
Ribosomal tunnel and translation regulation
A. Bogdanov (2010)
10.1074/jbc.272.3.1983
Discrete Cross-linking Products Identified during Membrane Protein Biosynthesis*
V. Laird (1997)
10.1006/JSBI.2001.4380
Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT.
A. Dunn (2001)
10.1016/J.GENE.2004.11.030
Translation initiation factor (iso) 4E interacts with BTF3, the beta subunit of the nascent polypeptide-associated complex.
M. Freire (2005)
10.1111/j.1567-1364.2008.00425.x
Overexpressed ribosomal proteins suppress defective chaperonins in Saccharomyces cerevisiae.
M. A. Kabir (2008)
Structure-function analyses of the ribosome-associated complex NAC (nascent polypeptide-associated complex) in Saccharomyces cerevisiae
L. Locher (2016)
10.1016/S0092-8674(00)80311-6
Both Lumenal and Cytosolic Gating of the Aqueous ER Translocon Pore Are Regulated from Inside the Ribosome during Membrane Protein Integration
S. Liao (1997)
10.1016/S0074-7696(08)62139-7
Translocation of proteins across the endoplasmic reticulum membrane.
J. Brodsky (1998)
10.1074/JBC.M205950200
Trigger Factor Retards Protein Export in Escherichia coli*
H. C. Lee (2002)
Jcb: Article
María Verónica Baez ()
10.1038/381571A0
Molecular chaperones in cellular protein folding
F. Hartl (1996)
10.1111/j.1365-2443.2005.00848.x
Interaction of the taxilin family with the nascent polypeptide‐associated complex that is involved in the transcriptional and translational processes
K. Yoshida (2005)
10.1038/s41598-019-40779-0
Streptococcus pneumoniae Cell Wall-Localized Trigger Factor Elicits a Protective Immune Response and Contributes to Bacterial Adhesion to the Host
A. Cohen (2019)
10.1016/0962-8924(96)10001-5
Snapshots of membrane-translocating proteins.
B. Martoglio (1996)
10.1016/j.molcel.2019.06.030
Early Scanning of Nascent Polypeptides inside the Ribosomal Tunnel by NAC.
M. Gamerdinger (2019)
10.1016/S1357-2725(02)00393-X
UBA domain containing proteins in fission yeast.
R. Hartmann-Petersen (2003)
10.2741/MACARIO
The molecular chaperone system and other anti-stress mechanisms in archaea.
A. Macario (2001)
10.1083/jcb.200303143
Dual recognition of the ribosome and the signal recognition particle by the SRP receptor during protein targeting to the endoplasmic reticulum
Elisabet C Mandon (2003)
10.3929/ETHZ-A-005064101
Structure of trigger factor in complex with the ribosome defines the molecular environment of the emerging nascent polypeptide chain
L. Ferbitz (2005)
10.1073/PNAS.95.5.2296
The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo.
R. George (1998)
10.1016/J.MITO.2006.01.001
Preparation of ribosomes loaded with truncated nascent proteins to study ribosome binding to mammalian mitochondria.
J. A. Mackenzie (2006)
10.1083/jcb.200910074
A dual function for chaperones SSB–RAC and the NAC nascent polypeptide–associated complex on ribosomes
Ansgar Koplin (2010)
10.4161/auto.29638
The nascent polypeptide-associated complex is essential for autophagic flux
B. Guo (2014)
10.1091/MBC.9.1.117
Signal recognition particle-dependent targeting of ribosomes to the rough endoplasmic reticulum in the absence and presence of the nascent polypeptide-associated complex.
D. Raden (1998)
10.1016/S0014-5793(99)01118-7
The nascent polypeptide‐associated complex (NAC) of yeast functions in the targeting process of ribosomes to the ER membrane
B. Wiedmann (1999)
Mechanisms of de novo multi-domain protein folding in bacteria and eukaryotes
Hung-Chun Chang (2007)
Jcb: Article
Sepideh Dadgar ()
Role of Molecular Chaperones in the Biosynthesis of Anion Exchanger 1
Sian T. Patterson (2011)
10.1111/J.1462-2920.2005.00751.X
Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock.
Boonchai B. Boonyaratanakornkit (2005)
10.1002/biot.201000327
Birth, life and death of nascent polypeptide chains
Sujata S Jha (2011)
The Proteostasis System in Nematodes and Baker´s Yeast
Katharina Papsdorf (2015)
bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery*.
D. Markesich (2000)
See more
Semantic Scholar Logo Some data provided by SemanticScholar