Online citations, reference lists, and bibliographies.
← Back to Search

Modified Embedded Atom Potentials For HCP Metals

M. Baskes, R. Johnson
Published 1994 · Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
The modified embedded atom method (MEAM) is an empirical extension of embedded atom method (EAM) that includes angular forces. The MEAM, which has previously been applied to the atoms in the FCC, BCC, and diamond cubic crystal systems, has been extended to the HCP crystal structure. Parameters have been determined for HCP metals that have c/a ratios less than ideal. The model is fitted to the lattice constants, elastic constants, cohesive energy, vacancy formation energy, and the BCC-HCP structural energy difference of these metals and is able to reproduce this extensive data base quite well. Structural energies and lattice constants of the HCP metals in a number of cubic structures are predicted. The divacancy is found to be unbound in all of the metals considered except for Be. Stacking fault and surface energies are found to be in reasonable agreement with experiment.
This paper references
10.1179/MTLR.1967.12.1.169
The crystallography and deformation modes of hexagonal close-packed metals
P. G. Partridge (1967)
10.2172/4010212
Phase Diagrams of the Elements
D. Young (1991)
Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook
G. Simmons (1971)
10.1103/PHYSREVB.46.2727
Modified embedded-atom potentials for cubic materials and impurities.
Baskes (1992)
10.1080/01418619108213902
The effect of stress on soft modes for the phase transformation in a Ti-Ni alloy
D. Li (1991)
10.1103/PHYSREVB.29.2963
Universal features of the equation of state of metals
J. Rose (1984)
10.1103/PHYSREVLETT.59.2666
Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon.
Baskes (1987)
10.1016/0022-3115(88)90092-X
A review of computer models of point defects in hcp metals
D. Bacon (1988)
10.1103/PHYSREVB.29.6443
Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals
M. Daw (1984)
10.1088/0965-0393/1/5/011
Internal relaxation in the HCP lattice
R. Johnson (1993)
10.1103/PHYSREVB.40.6085
Semiempirical modified embedded-atom potentials for silicon and germanium.
Baskes (1989)
10.1080/13642819108225975
N-body interatomic potentials for hexagonal close-packed metals
M. Igarashi (1991)
10.1016/0364-5916(88)90038-7
Metastable lattice stabilities for the elements
N. Saunders (1988)
10.1080/13642818408227636
Relations entre la structure électronique et la facilité de glissement dans les métaux hexagonaux compacts
P. B. Legrand (1984)
10.1016/0039-6028(77)90442-3
Surface free energies of solid metals: Estimation from liquid surface tension measurements
W. Tyson (1977)
Cohesion in Metals: Transition Metal Alloys
F. Boer (1989)
10.1103/PHYSREV.128.2614
Deformation Potentials in Silicon. I. Uniaxial Strain
L. Kleinman (1962)
10.1103/PHYSREVLETT.50.1285
Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals
M. Daw (1983)
10.1080/01418618308234904
Weak-beam study of glide dislocations in h.c.p. cobalt
A. Korner (1983)
10.1119/1.1987046
Thermodynamics of Crystals
D. Wallace (1972)
10.1103/PHYSREVB.31.1909
Crystal structure from one-electron theory.
Skriver (1985)



This paper is referenced by
10.1088/0965-0393/5/2/005
Calculation of the behaviour of Si ad-dimers on Si(001)
M. Baskes (1997)
10.3390/ma13092062
Influence of Zinc Content on the Mechanical Behaviors of Cu-Zn Alloys by Molecular Dynamics
H. W. Jang (2020)
10.1002/9780470890905.CH4
Understanding Metal/Metal Electrical Contact Conductance from the Atomic to Continuum Scales
D. L. Irving (2010)
10.1016/J.SSC.2006.10.037
Size-dependent multilayer relaxation of nanowires and additional effect of surface stresses
Fei Ma (2007)
10.1088/0965-0393/8/6/305
Highly optimized empirical potential model of silicon
T. Lenosky (2000)
10.1557/JMR.2002.0135
Monte Carlo simulation of phase separation behavior in a Cu-Co alloy nanoparticle
Jae-Hyeok Shim (2002)
Intrinsic Point Defects in Zinc Oxide: Modeling of Structural, Electronic, Thermodynamic and Kinetic Properties
P. Erhart (2006)
10.1002/ADEM.201000050
Enhancing Fracture Toughness of Magnesium Alloy by Formation of Low-Angle Grain Boundary Structure†
H. Somekawa (2010)
10.1016/j.mtla.2020.100748
Low temperature growth of Cu thin films on TiN(001) templates: Structure and energetics
X. Zhang (2020)
Atomistic modeling of metallic nanoparticles on carbonaceous substrates and epitaxial graphene on metals
G. D. Förster (2015)
10.1016/S0038-1098(98)00176-8
Diffusion mechanisms in under-cooled binary metal liquids of Zr67Cu33
C. Gaukel (1998)
10.1016/J.ACTAMAT.2010.07.036
Deformation processes in [112¯0]-textured nanocrystalline Mg by molecular dynamics simulation
D. Kim (2010)
10.1143/JPSJ.72.2539
Molecular Dynamics Simulation of Martensitic Transformations in NiAl Alloy Using the Modified Embedded Atom Method
H. Ishida (2003)
10.5445/IR/1000104174
Development of RF-MEAM interaction potentials for Fe-Y
S. Koch (2019)
10.1142/S201032471540007X
Molecular Dynamics Simulation of Iron — A Review
C. P. Chui (2015)
10.1016/J.ACTAMAT.2015.12.019
Interaction between oxygen interstitials and deformation twins in alpha-titanium
William J. Joost (2016)
10.1002/9780470972281.CH3
Applications of Atomistic Simulation in Ceramics and Metals
J. Fan (2010)
10.3139/146.101022
Study of the effect of heat treatment on a Pt-Co thin film by Monte Carlo simulations coupled with a modified embedded atom method
H. Kim (2005)
10.1016/S1359-6462(99)00036-6
A modified embedded-atom potential for L10 γ-TiAl
D. Chen (1999)
10.1557/PROC-398-287
Free energy calculations of Cu-Sn interfaces
R. Ravelo (1995)
10.1016/J.JNUCMAT.2008.12.063
Vacancies, interstitials and gas atoms in beryllium
M. Ganchenkova (2009)
10.1016/j.mtla.2019.100355
Atomistic simulations of basal dislocations in Mg interacting with Mg17Al12 precipitates
A. Vaid (2019)
10.1088/1361-651X/AABAAD
New interatomic potential for Mg-Al-Zn alloys with specific application to dilute Mg-based alloys
Doyl E. Dickel (2018)
10.1016/J.NIMB.2013.01.048
Molecular dynamics simulations of irradiation cascades in alpha-zirconium under macroscopic strain
S. Di (2013)
10.1021/ACS.JPCC.7B02727
Interatomic Potential of Li–Mn–O and Molecular Dynamics Simulations on Li Diffusion in Spinel Li1–xMn2O4
Eunkoo Lee (2017)
10.4028/www.scientific.net/KEM.417-418.21
Molecular Dynamics Simulation on Crack Propagation for Magnesium
Shu Sheng Xu (2009)
10.1088/0965-0393/21/8/085008
Modified embedded-atom method interatomic potentials for pure Y and the V–Pd–Y ternary system
Won-Seok Ko (2013)
10.2514/6.2004-1697
An Empirical Molecular Dynamics Potential for an Al+Fe 2 O 3 Reactive Metal Powder Mixture
V. Tomar (2004)
10.1016/B978-044453057-8.50004-0
Metal nanoclusters: Synthesis and strategies for their size-control
H. Boennemann (2007)
10.1103/PHYSREVB.69.024303
Quasiharmonic free energy and derivatives for many-body interactions: The embedded atom method
E. P. Isoardi (2004)
10.1016/J.JNUCMAT.2015.10.016
Atomistic modeling of high temperature uranium–zirconium alloy structure and thermodynamics
A. Moore (2015)
THE MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN FEDERATION
R. Yusupov (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar