← Back to Search

# The Atomic Simulation Environment-a Python Library For Working With Atoms.

Ask Hjorth Larsen, Jens Jørgen Mortensen, J. Blomqvist, Ivano E. Castelli, R. Christensen, M. Dulak, J. Friis, M. N. Groves, B. Hammer, Cory Hargus, Eric D Hermes, P. C. Jennings, Peter Bjerre Jensen, J. Kermode, J. Kitchin, Esben Leonhard Kolsbjerg, Joseph Kubal, K. Kaasbjerg, S. Lysgaard, Jón Bergmann Maronsson, Tristan Maxson, T. Olsen, Lars Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, Ole Schütt, M. Strange, K. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Zhenhua Zeng, K. W. Jacobsen

Published 2017 · Computer Science, Medicine

The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.

This paper references

10.1103/PhysRevB.71.035109

Real-space grid implementation of the projector augmented wave method

J. J. Mortensen (2005)

10.1088/0953-8984/21/39/395502

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.

P. Giannozzi (2009)

Atlas of Electrochemical Equilibria in Aqueous Solutions

M. Pourbaix (1974)

10.1107/97809553602060000100

International Tables for Crystallography: Space-group symmetry

Th. Hahn (2006)

10.1063/1.1839852

Introducing ONETEP: linear-scaling density functional simulations on parallel computers.

Chris-Kriton Skylaris (2005)

10.1103/PHYSREVB.31.6184

Empirical chemical pseudopotential theory of molecular and metallic bonding.

Abell (1985)

10.1103/PHYSREVE.62.5864

Erratum: Constrained systems and statistical distribution [Phys. Rev. E61, 6165 (2000)]

S. Melchionna (2000)

10.1109/5992.998641

An object-oriented scripting interface to a legacy electronic structure code

S. R. Bahn (2002)

10.1109/MCSE.2011.37

The NumPy Array: A Structure for Efficient Numerical Computation

S. Walt (2011)

10.1016/0016-0032(60)90133-2

Introduction To Statistical Thermodynamics

P. Maurer (2016)

10.1088/0034-4885/72/2/026501

Hybrid atomistic simulation methods for materials systems

N. Bernstein (2009)

10.1063/1.4878664

Improved initial guess for minimum energy path calculations.

S. Smidstrup (2014)

Reply to “Comment on ‘Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model

Alim B. Alchagirov (2003)

Expressive Programming for Computational Physics in Fortran 950

G. Csányi (2007)

10.1103/PhysRevB.63.245415

Theory of resonant Raman scattering of tetrahedral amorphous carbon

M. Profeta (2001)

10.1098/RSPA.1924.0098

On the determination of molecular fields. III.—From crystal measurements and kinetic theory data

J. Jones (1924)

10.1016/j.cpc.2009.03.010

PHON: A program to calculate phonons using the small displacement method

D. Alfè (2009)

10.1088/0953-8984/14/4/312

A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons

D. W. Brenner (2002)

10.1103/PHYSREVLETT.97.170201

Structural relaxation made simple.

E. Bitzek (2006)

10.1103/PhysRevB.65.165401

Density-functional method for nonequilibrium electron transport

M. Brandbyge (2002)

10.1063/1.1323224

Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points

G. Henkelman (2000)

10.1088/0953-8984/26/36/363202

Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory.

A. Gulans (2014)

10.1021/JP070186P

DFTB+, a sparse matrix-based implementation of the DFTB method.

B. Aradi (2007)

10.1103/PHYSREVA.31.1695

Canonical dynamics: Equilibrium phase-space distributions.

Hoover (1985)

10.1103/PHYSREVLETT.56.632

New empirical model for the structural properties of silicon.

Tersoff (1986)

10.1002/jcc.21759

Effect of the damping function in dispersion corrected density functional theory

S. Grimme (2011)

10.1063/1.4961868

An automated nudged elastic band method.

E. L. Kolsbjerg (2016)

10.1103/PhysRevB.75.205413

Inelastic transport theory from first principles: Methodology and application to nanoscale devices

T. Frederiksen (2007)

Numerical recipes in C

W. Press (2002)

Brandbyge. Transmission eigenchannels from nonequilibrium Green’s functions

Magnus Paulsson (2007)

USPEX — Evolutionary crystal structure prediction Comput

Bligaard T J ó hannesson G (2006)

10.1107/97809553602060000111

International Tables for Crystallography

Géard A. Langlet (2002)

First principles methods using

Iannuzzi M Hutter J (2014)

10.1002/wcms.1121

An overview of the Amber biomolecular simulation package

Romelia Salomón-Ferrer (2013)

Mads Brandbyge, and Antti-Pekka Jauho. Inelastic transport theory from first-principles: methodology and applications for nanoscale devices

Thomas Frederiksen (2007)

10.1103/PHYSREVLETT.72.1124

Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems.

Mills (1994)

10.1063/1.328693

Polymorphic transitions in single crystals: A new molecular dynamics method

M. Parrinello (1981)

Introduction to Lattice Dynamics. Cambridge Topics in Mineral Physics and Chemistry

M. T. Dove (1993)

10.1103/PHYSREVB.28.4397

Effective two-dimensional Hamiltonian at surfaces

F. Guinea (1983)

Quantum Chemistry and Solid-state Physics Software

Logiciel (2012)

10.1137/100792743

Efficient Sampling of Saddle Points with the Minimum-Mode Following Method

A. Pedersen (2011)

10.1007/S11837-011-0102-6

The potential of atomistic simulations and the knowledgebase of interatomic models

E. Tadmor (2011)

10.1016/J.SUSC.2015.03.023

A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals

J. Wellendorff (2015)

10.1057/palgrave.jors.2601183

Numerical Optimization

D. Smith (2001)

Matplotlib : A 2 D graphics environment

D HunterJ (2007)

10.1021/CS400875K

Remote Activation of Chemical Bonds in Heterogeneous Catalysis

Anton M. H. Rasmussen (2014)

10.1103/PHYSREVE.61.6165

Constrained systems and statistical distribution

Melchionna (2000)

10.1103/PHYSREVB.54.7830

Infrared intensities and Raman-scattering activities within density-functional theory.

Porezag (1996)

Essentials of Computational Chemistry

Christopher J. Cramer (2004)

10.1103/PHYSREVLETT.68.2512

Landauer formula for the current through an interacting electron region.

Meir (1992)

10.1103/PHYSREVB.85.235149

Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

J. Wellendorff (2012)

USPEX — Evolutionary crystal structure prediction Comput

Bligaard T ó hannesson G (2006)

Computer Simulation of Rare Events and Dynamics of Classical and Quantum Condensed-Phased Systems

Hannes Jónsson

10.1109/MCSE.2011.36

Python for Scientists and Engineers

K. J. Millman (2011)

10.1002/AENM.201400915

New Light‐Harvesting Materials Using Accurate and Efficient Bandgap Calculations

Ivano E. Castelli (2015)

10.1103/PHYSREVA.34.2499

Constant-pressure equations of motion.

Hoover (1986)

10.1016/J.CPC.2010.04.018

NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations

M. Valiev (2010)

10.1063/1.3382344

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.

S. Grimme (2010)

10.1007/s11244-013-0161-8

Global Optimization of Adsorbate–Surface Structures While Preserving Molecular Identity

A. A. Peterson (2013)

10.1557/MRS.2012.93

Contributions of the embedded-atom method to materials science and engineering

S. Foiles (2012)

10.1080/14786437008238472

Electrical resistance of disordered one-dimensional lattices

R. Landauer (1970)

10.1109/MCSE.2007.58

Python for Scientific Computing

T. E. Oliphant (2007)

10.1063/1.1329672

A climbing image nudged elastic band method for finding saddle points and minimum energy paths

G. Henkelman (2000)

NIST Standard Reference Database Number 69

P. Linstrom (2005)

Knowledgebase of interatomic models

10.1103/PhysRevB.80.195112

Localized atomic basis set in the projector augmented wave method

A. H. Larsen (2009)

10.1016/J.CPC.2009.07.007

ABINIT: First-principles approach to material and nanosystem properties

X. Gonze (2009)

10.1063/1.4886337

A genetic algorithm for first principles global structure optimization of supported nano structures.

L. Vilhelmsen (2014)

10.1039/C5CY01332A

Identifying systematic DFT errors in catalytic reactions

R. Christensen (2015)

10.1103/PHYSREVB.67.026103

Reply to “Comment on ‘Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model’ ”

A. Alchagirov (2003)

10.1002/wcms.1159

cp2k: atomistic simulations of condensed matter systems

Jürg Hutter (2014)

10.1063/1.445869

Comparison of simple potential functions for simulating liquid water

W. Jorgensen (1983)

An overview of the Amber biomolecular package Wiley Interdiscip

Case D A Salomon-Ferrer R (2012)

10.1103/PHYSREVLETT.77.3865

Generalized Gradient Approximation Made Simple.

Perdew (1996)

10.1524/zkri.220.5.567.65075

First principles methods using CASTEP

S. J. Clark (2005)

10.1039/B305686D

Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries

R. Johnston (2003)

10.1007/s11244-013-0181-4

Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion

Ivano E. Castelli (2013)

10.1016/J.Commatsci.2010.05.010

High-throughput electronic band structure calculations: Challenges and tools

W. Setyawan (2010)

10.1088/0022-3719/4/8/018

Direct calculation of the tunneling current

C. Caroli (1971)

10.1016/0039-6028(96)00816-3

A semi-empirical effective medium theory for metals and alloys

K. W. Jacobsen (1996)

10.1007/s11244-013-0160-9

Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts

S. Lysgaard (2013)

10.1016/j.cpc.2009.06.022

Ab initio molecular simulations with numeric atom-centered orbitals

V. Blum (2009)

10.1109/MCSE.2007.55

Matplotlib: A 2D Graphics Environment

J. D. Hunter (2007)

10.1016/j.cpc.2006.07.020

USPEX - Evolutionary crystal structure prediction

C. Glass (2006)

10.1088/0953-8984/14/11/302

The SIESTA method for ab initio order-N materials simulation

J. M. Soler (2001)

10.1063/1.4947225

Pyridine adsorption and diffusion on Pt(111) investigated with density functional theory.

E. L. Kolsbjerg (2016)

10.1002/9780470050118.ecse109

Design Patterns

Cyril S. Ku (2008)

10.1103/PHYSREVB.54.11169

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

Kresse (1996)

10.5006/0010-9312-23.12.371

Simplified Procedure for Constructing Pourbaix Diagrams

E. D. Verink (1967)

10.1103/PHYSREVLETT.45.1196

Crystal structure and pair potentials: A molecular-dynamics study

M. Parrinello (1980)

10.1039/b718768h

Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts.

H.-J. Freund (2008)

10.1103/PHYSREVLETT.108.126101

Systematic study of Au6 to Au12 gold clusters on MgO(100) F centers using density-functional theory.

L. Vilhelmsen (2012)

10.1007/BF00128336

MOPAC: A semiempirical molecular orbital program

J. J. Stewart (1990)

10.1039/C5CP00351B

Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems.

X. Andrade (2015)

10.1103/PHYSREVB.42.9458

Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films.

Brenner (1990)

10.1021/JP970984N

Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms

D. Wales (1997)

10.1103/PHYSREVB.54.17954

Edge state in graphene ribbons: Nanometer size effect and edge shape dependence.

Nakada (1996)

10.1063/1.1724816

Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems.

S. Goedecker (2004)

Ab initio molecular simulations with numeric atomcentered orbitals

Volker Blum (2009)

10.1103/PhysRevLett.104.136403

Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons.

A. Bartók (2010)

10.1557/MRS.2012.94

Bond order potentials for fracture, wear, and plasticity

L. Pastewka (2012)

10.1063/1.881812

Understanding molecular simulation: from algorithms to applications

D. Frenkel (1996)

10.1063/1.2839275

Benchmark density functional theory calculations for nanoscale conductance.

M. Strange (2008)

10.1016/J.JCAT.2008.08.003

First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

Glenn Jones (2008)

10.1103/PHYSREVB.58.7260

Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties

M. Elstner (1998)

10.1038/140382b0

Statistical Mechanics:

E. M. (1937)

10.1088/0953-8984/22/25/253202

Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method.

J. Enkovaara (2010)

The Atomic Simulation Environment - A Python library for working with atoms

A. H. Larsen (2017)

10.1063/1.480204

Molecular N2 chemisorption—specific adsorption on step defect sites on Pt surfaces

C. E. Tripa (1999)

10.1103/PHYSREVLETT.58.1861

Green's-function approach to linear response in solids.

Baroni (1987)

10.1063/1.4704796

New accurate reference energies for the G2/97 test set.

Robin Haunschild (2012)

10.1142/9789812839664_0016

Nudged elastic band method for finding minimum energy paths of transitions

H. Jónsson (1998)

10.1098/RSPA.1924.0082

On the determination of molecular fields. —II. From the equation of state of a gas

J. Jones (1924)

10.1103/PhysRevB.87.205410

Screened empirical bond-order potentials for Si-C

L. Pastewka (2013)

Matplotlib : A 2 D graphics environment Comput

Skylaris C-K (2007)

Ab initio molecular simulations with numeric atom - centered orbitals Comput

Gehrke R Blum V (2009)

10.1016/J.SUSC.2015.05.024

Reactivity concepts at interfaces: Coupling theory with experiment

J. Greeley (2015)

10.1016/0098-3004(92)90029-Q

SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C

J. Johnson (1991)

10.1103/PHYSREV.34.57

Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels

P. Morse (1929)

10.1103/PHYSREVLETT.50.1285

Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals

M. Daw (1983)

10.1063/1.4823265

Making applications programmable

P. Dubois (1994)

10.1039/c4cp03133d

Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms.

P. Jensen (2014)

10.1103/PHYSREVB.85.235438

Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states

K. Persson (2012)

10.1021/nl501205j

Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction.

S. Xie (2014)

10.1006/JCPH.1995.1039

Fast parallel algorithms for short-range molecular dynamics

S. Plimpton (1993)

10.1147/rd.441.0251

Spatial variation of currents and fields due to localized scatterers in metallic conduction

R. Landauer (2000)

10.1021/ct501155k

Removing External Degrees of Freedom from Transition-State Search Methods using Quaternions.

Marko M Melander (2015)

10.1103/REVMODPHYS.87.897

Density functional theory: Its origins, rise to prominence, and future

R. O. Jones (2015)

Design patterns: elements of reuseable object-oriented software

E. Gamma (1994)

10.1103/PHYSREVB.13.5188

SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS

H. J. Monkhorst (1976)

10.1016/j.commatsci.2009.07.013

Density-functional tight-binding for beginners

P. Koskinen (2009)

10.1103/PhysRevLett.75.288

Molecular geometry optimization with a genetic algorithm.

Deaven (1995)

10.1103/PHYSREVB.24.864

Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule

E. Wimmer (1981)

10.1016/J.SUSC.2014.03.021

Walking-like diffusion of two-footed asymmetric aromatic adsorbates on Pt(111)

G. Goubert (2014)

10.1103/PHYSREVLETT.88.255506

Combined electronic structure and evolutionary search approach to materials design.

G. H. Jóhannesson (2002)

10.1007/978-94-011-1812-5_5

Theory of the scanning tunneling microscope.

Tersoff (1985)

10.1103/PHYSREVLETT.102.073005

Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data.

A. Tkatchenko (2009)

10.1063/1.4870397

mBEEF: an accurate semi-local Bayesian error estimation density functional.

J. Wellendorff (2014)

10.1126/SCIENCE.8346439

Genetic algorithms: principles of natural selection applied to computation.

S. Forrest (1993)

10.1063/1.4947024

A universal preconditioner for simulating condensed phase materials.

David Packwood (2016)

10.1016/S0010-4655(00)00065-5

High Performance Computational Chemistry: An Overview of NWChem a Distributed Parallel Application

R. A. Kendall (2000)

10.1007/BF01589116

On the limited memory BFGS method for large scale optimization

D. Liu (1989)

10.1103/PhysRevLett.95.216401

Bayesian error estimation in density-functional theory.

J. Mortensen (2005)

10.1016/j.cpc.2016.05.010

Amp: A modular approach to machine learning in atomistic simulations

Alireza Khorshidi (2016)

10.5860/choice.27-0936

Genetic Algorithms in Search Optimization and Machine Learning

D. Goldberg (1988)

10.1007/978-3-540-30474-6_47

Fast and Scalable Startup of MPI Programs in InfiniBand Clusters

Weikuan Yu (2004)

Density functional theory: Its origins, rise to prominence, and future

R. O. Jones (2015)

10.1090/S0025-5718-1980-0572855-7

Updating Quasi-Newton Matrices With Limited Storage

J. Nocedal (1980)

10.1093/bioinformatics/btt055

GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit

Sander Pronk (2013)

10.1063/1.448118

Molecular dynamics with coupling to an external bath

H. Berendsen (1984)

10.1016/S0010-4655(00)00072-2

New algebraic formulation of density functional calculation

S. Ismail-Beigi (2000)

10.1021/ACS.CHEMMATER.5B00446

Accelerated DFT-Based Design of Materials for Ammonia Storage

P. Jensen (2015)

Numerical Optimization (Springer Series in Operations Research and Financial Engineering)

J. Nocedal (2000)

10.1039/c5cp00298b

A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO₂ reduction.

S. Lysgaard (2015)

10.1103/PhysRevB.76.115117

Transmission eigenchannels from nonequilibrium Green's functions

M. Paulsson (2007)

Contributions of the embeddedatom method to materials science and engineering

Porezag D Elstner M (2012)

10.1007/bf00646086

Computer simulation of liquids

C. L. Brooks (1989)

This paper is referenced by

10.1007/978-3-319-63962-8_293-1

Big Semantic Data Processing in the Materials Design Domain

P. Lambrix (2019)

10.11588/heidok.00024519

Development of a modular quantum-chemistry framework for the investigation of novel basis functions

M. Herbst (2018)

10.1002/jcc.26389

Elongation method with intermediate mechanical and electrostatic embedding for geometry optimizations of polymers

Denis Mashkovtsev (2020)

10.1002/ADTS.201900098

A Ligand Field Molecular Mechanics Study of CO2-Induced Breathing in the Metal–Organic Framework DUT-8(Ni)

Patrick Melix (2019)

10.1016/J.ELECTACTA.2019.05.058

On the role of the surface charge plane position at Au(hkl)–BMImPF6 interfaces

Iuliia V. Voroshylova (2019)

10.1039/C8EE00210J

Activation of ultrathin SrTiO3 with subsurface SrRuO3 for the oxygen evolution reaction

A. R. Akbashev (2018)

10.1063/5.0004792

Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations

L. Ratcliff (2020)

10.1063/5.0012901

The CECAM electronic structure library and the modular software development paradigm.

Micael J. T. Oliveira (2020)

10.3390/molecules23112958

Interfacing CRYSTAL/AMBER to Optimize QM/MM Lennard–Jones Parameters for Water and to Study Solvation of TiO2 Nanoparticles

Asmus Ougaard Dohn (2018)

10.1063/5.0012815

Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional.

Y. Yao (2020)

10.1016/j.jcat.2020.05.029

Linking low and high temperature NO oxidation mechanisms over Brønsted acidic chabazite to dynamic changes of the active site

Taha Salavati-fard (2020)

10.1039/c9cp04973h

Atomically dispersed platinum on low index and stepped ceria surfaces: phase diagrams and stability analysis.

X. Wang (2019)

10.1002/adts.201900015

ICET – A Python Library for Constructing and Sampling Alloy Cluster Expansions

Mattias AAngqvist (2019)

10.1038/sdata.2018.82

Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms

Kamal Choudhary (2018)

10.1039/c9cp03840j

Optimizing bidentate N-heterocyclic carbene ligands for the modification of late transition metal surfaces - new insights through theory.

Melanie C Börner (2019)

10.1021/acs.jctc.7b00621

Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex.

A. Dohn (2017)

10.1063/1.5080298

The Lorentz sphere visualised.

S. Sturniolo (2019)

10.1063/1.5078432

Space partitioning of exchange-correlation functionals with the projector augmented-wave method.

H. Levämäki (2019)

AiiDAlab -- an ecosystem for developing, executing, and sharing scientific workflows

Aliaksandr V. Yakutovich (2020)

10.1038/s41598-019-42483-5

Network topological model of reconstructive solid-state transformations

V. A. Blatov (2019)

10.1063/1.5132332

Uncertainty quantification of DFT-predicted finite temperature thermodynamic properties within the Debye model.

P. Guan (2019)

10.1039/C8CP06567E

Excited-state solvation structure of transition metal complexes from molecular dynamics simulations and assessment of partial atomic charge methods.

M. Abedi (2019)

10.1016/j.cpc.2018.08.004

PySCF-NAO: An efficient and flexible implementation of linear response time-dependent density functional theory with numerical atomic orbitals

P. Koval (2019)

10.1016/j.commatsci.2019.109455

BOPcat software package for the construction and testing of tight-binding models and bond-order potentials.

A. N. Ladines (2019)

10.1021/acs.jpcc.8b09598

An In Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates

Y. Katayama (2019)

10.1002/wcms.1439

Making machine learning a useful tool in the accelerated discovery of transition metal complexes

H. Kulik (2020)

10.1063/1.5099204

Determining interface structures in vertically aligned nanocomposite films

Bonan Zhu (2019)

10.1063/1.5097553

Optical signatures of pentacene in soft rare-gas environments.

O. Stauffert (2019)

10.1038/s41467-020-15965-8

Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction

Wugen Huang (2020)

10.1080/00268976.2020.1798527

Ab initio studies of propane dehydrogenation to propene with graphene

A. M. Ukpong (2020)

10.1002/batt.201900152

Autonomous Discovery of Materials for Intercalation Electrodes

Felix T. Bölle (2020)

10.1063/5.0006002

Psi4 1.4: Open-source software for high-throughput quantum chemistry.

Daniel G A Smith (2020)

See more