Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Topographical Variation Of The Human Primary Cortices: Implications For Neuroimaging, Brain Mapping, And Neurobiology.

J. Rademacher, V. Caviness, H. Steinmetz, A. Galaburda
Published 1993 · Psychology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The relationships of the "primary" cytoarchitectonic neocortical fields, 17, 41, 3b, and 4 (Brodmann areas), to salient topographic landmarks have been reconstructed from serial histological sections in 20 human cerebral hemispheres (10 brains). Each of these architectonic fields is found to bear a characteristic relationship to a set of enframing anatomic landmarks, in particular, gyri, fissures, and sulci, that can be readily defined by MRI. Two classes of variability were found characteristic, at least to some extent, of each of the fields. Class 1 variability--variability that is not predictable from visible landmarks--was typical of the polar and for the cuneal and lingual extracalcarine distributions of field 17 and the distribution of field 4 upon the paracentral lobule. Class 2 variability--variability that is closely predictable from visible landmarks--is seen in the marked interindividual or interhemispheric variation in size or shape of a field and was found to be prominent for all four fields. Because of the prominence of class 2 variability, direct reference to the landmarks that frame these fields may be expected to be a more reliable basis for functional mapping than reference to a template or stereotactic coordinate-based system of reference to a standard or idealized brain.
This paper references
10.1001/ARCHNEUR.1968.00470330125022
Atlas d'anatomie stereotaxique du telencephale.
E. Housepian (1968)
10.1093/CERCOR/2.5.417
In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging.
V. Clark (1992)
10.1093/BRAIN/54.4.470
A CONTRIBUTION TO THE CORTICAL REPRESENTATION OF VISION
Gordon Holmes (1931)
10.1111/j.1749-6632.1976.tb25499.x
MORPHOLOGICAL CEREBRAL ASYMMETRIES OF MODERN MAN, FOSSIL MAN, AND NONHUMAN PRIMATE
M. LeMay (1976)
10.1002/CNE.901900312
Cytoarchitectonic organization of the human auditory cortex
A. Galaburda (1980)
10.1146/ANNUREV.NE.08.030185.000245
The primate premotor cortex: past, present, and preparatory.
S. Wise (1985)
10.1038/323806A0
Mapping human visual cortex with positron emission tomography
P. Fox (1986)
10.1093/CERCOR/1.5.374
Magnetic resonance imaging of human intracortical structure in vivo.
H. Damasio (1991)
10.1001/ARCHNEUR.1978.00500360036007
Human brain. Cytoarchitectonic left-right asymmetries in the temporal speech region.
A. Galaburda (1978)
Ueber die vordere quere Schläfenwindung des menschlichen Grosshirns
R. Heschl (1878)
10.3171/JNS.1990.72.3.0383
Correlation of motor cortex brain mapping data with magnetic resonance imaging.
M. Berger (1990)
Atlas of the Cerebral Sulci
小野 道夫 (1990)
10.1162/jocn.1992.4.4.352
Human Cerebral Cortex: Localization, Parcellation, and Morphometry with Magnetic Resonance Imaging
J. Rademacher (1992)
Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen
C. Economo (1925)
10.1097/00004728-198901000-00004
Accurate Three‐Dimensional Registration of CT, PET, and/or MR Images of the Brain
C. Pelizzari (1989)
10.1073/PNAS.89.12.5675
Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.
K. Kwong (1992)
10.1097/00004691-199010000-00008
A critical review of clinical applications of topographic mapping of brain potentials.
F. Silva (1990)
10.1016/0013-4694(91)90032-Y
Anatomical localization revealed by MEG recordings of the human somatosensory system.
Jihye Suk (1991)
10.1097/00004728-198911000-00011
Cerebral asymmetry: MR planimetry of the human planum temporale.
H. Steinmetz (1989)
10.1016/0093-934X(90)90145-7
Total surface of temporoparietal intrasylvian cortex: Diverging left-right asymmetries
H. Steinmetz (1990)
10.1016/0042-6989(90)90077-X
Localization of visually evoked cortical activity using magnetic resonance imaging and computerized tomography
R. Srebro (1990)
10.1016/0168-5597(90)90020-E
Amplitude asymmetry of hemifield pattern reversal VEPs in healthy subjects.
Y. Abe (1990)
10.1016/0042-6989(84)90041-5
The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability
D. Essen (1984)
10.1056/NEJM198705143162003
Peripheral vision in persons with dyslexia.
G. Geiger (1987)
Topographic Mapping of Brain Electrical Activity
F. Duffy (1986)
10.1002/ANA.410110118
Asymmetrical volumes of the right and left frontal and occipital regions of the human brain
D. Weinberger (1982)
10.1007/978-1-4757-9619-3_1
Architecture and Connections of Cortical Association Areas
D. Pandya (1985)
10.3171/JNS.1974.40.6.0747
The topography and variability of the primary visual cortex in man.
S. Stensaas (1974)
10.1098/RSTB.1900.0013
The Exact Histological Localisation of the Visual Area of the Human Cerebral Cortex
J. S. Bolton (1900)
10.1126/science.161.3837.186
Human Brain: Left-Right Asymmetries in Temporal Speech Region
N. Geschwind (1968)
10.1007/978-3-642-81522-5
Architectonics of the Human Telencephalic Cortex
P. D. H. Braak (1980)
10.1001/jama.1952.02930330079031
The isocortex of man
Percival Bailey (1951)
10.1136/jnnp.15.2.99
WOUNDS OF THE VISUAL PATHWAY
J. Spalding (1952)
10.1016/s0140-6736(00)47063-7
The Cerebral Cortex of Man
W. Penfield (1950)
10.1007/978-3-642-66204-1_19
Clinical and Surgical Studies of the Cerebral Speech Areas in Man
T. Rasmussen (1975)
10.1126/SCIENCE.7079770
Tonotopic organization of the human auditory cortex.
G. Romani (1982)
10.1002/ANA.410290314
Anatomical left‐right asymmetry of language‐related temporal cortex is different in left‐ and right‐handers
H. Steinmetz (1991)
10.1073/PNAS.89.13.5951
Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.
S. Ogawa (1992)
10.1136/jnnp.15.3.169
WOUNDS OF THE VISUAL PATHWAY
J. Spalding (1952)
10.1002/ANA.410180210
Developmental dyslexia: Four consecutive patients with cortical anomalies
A. Galaburda (1985)
10.1038/jcbfm.1992.128
Individual Integration of Positron Emission Tomography and High-Resolution Magnetic Resonance Imaging
H. Steinmetz (1992)
10.1097/00005053-191012000-00013
Vergleichende Lokalisationslehre der Grosshirnrinde
Jelliffe. (1910)
10.3109/9781420004601-5
Somatosensory System
A. Iggo (1973)
10.1016/0013-4694(90)90171-F
Identification of sources of brain neuronal activity with high spatiotemporal resolution through combination of neuromagnetic source localization (NMSL) and magnetic resonance imaging (MRI).
C. Pantev (1990)
10.1007/BF02865945
Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede
C. Economo (1930)
10.1162/jocn.1989.1.1.88
Brainprints: Computer-Generated Two-Dimensional Maps of the Human Cerebral Cortex in vivo
M. Jouandet (1989)
Lesion analysis in neuropsychology
H. Damasio (1989)
10.1152/JN.1991.66.3.735
Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography.
Scott T. Grafton (1991)
Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates.
H. Steinmetz (1990)
10.1016/0013-4694(89)90227-7
Craniocerebral topography within the international 10-20 system.
H. Steinmetz (1989)
10.1523/JNEUROSCI.02-09-01329.1982
The premotor cortex of the monkey
M. Weinrich (1982)
10.1523/JNEUROSCI.07-03-00913.1987
Retinotopic organization of human visual cortex mapped with positron- emission tomography
P. Fox (1987)
10.1016/0028-3932(87)90091-1
Planum temporale asymmetry, reappraisal since Geschwind and Levitsky
A. Galaburda (1987)
10.1097/00004691-199010000-00006
Adequacy of the International 10–20 Electrode System for Computed Neurophysiologic Topography
M. Myslobodsky (1990)
10.1097/00004728-198901000-00003
Cerebral Cortical Localization: Application and Validation of the Proportional Grid System in MR Imaging
H. Steinmetz (1989)



This paper is referenced by
10.1016/S0079-6123(07)66007-5
Applications of magnetic resonance spectroscopy to tinnitus research: initial data, current issues, and future perspectives.
A. Cacace (2007)
10.1093/cercor/bhm225
Cortical Folding Patterns and Predicting Cytoarchitecture
B. Fischl (2008)
10.1007/BFb0046976
Application of an Automatically Built 3D Morphometric Brain Atlas: Study of Cerebral Ventricle Shape
G. Subsol (1996)
Architectoni cIdentificatio no fth eCore Regio ni nAuditor yCorte xo fMacaques, Chimpanzees ,an dHumans
Tro Ya . Hackett (2001)
10.1016/B978-012738903-5/50030-8
What Functional Brain Imaging Will Mean for Neurology
R. Frackowiak (2005)
10.1016/j.compmedimag.2010.11.002
An improved representation of regional boundaries on parcellated morphological surfaces
X. Hao (2011)
10.5772/INTECHOPEN.85537
Attention and Working Memory in Human Auditory Cortex
B. Barton (2019)
10.1017/S0317167100005965
Human tonotopic maps and their rapid task-related changes studied by magnetic source imaging.
I. Ozaki (2007)
10.1016/S1567-4231(03)03023-5
Auditory evoked potentials in the definition of eloquent cortical areas
C. Liégeois-Chauvel (2003)
10.1152/JN.00500.2003
Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans.
J. F. Brugge (2003)
10.1006/brcg.2001.1322
Rhythm and Melody in Children and Adolescents after Left or Right Temporal Lobectomy
M. Dennis (2001)
10.1016/B978-012692535-7/50093-8
Chapter 17 – Brain Templates
John W. Haller (1999)
10.1006/nimg.1996.0003
High-Resolution Random Mesh Algorithms for Creating a Probabilistic 3D Surface Atlas of the Human Brain
P. Thompson (1996)
10.1016/S0166-4115(97)80077-5
Chapter 10 - Hemispheric specialization of human auditory processing: Perception of speech and musical sounds
R. Zatorre (1997)
10.1002/hbm.22054
Effects of age on prefrontal subregions and hippocampal volumes in young and middle‐aged healthy humans
R. Wellington (2013)
10.1016/j.neuroimage.2011.04.014
Manual, semi-automated, and automated delineation of chronic brain lesions: A comparison of methods
M. Wilke (2011)
10.1007/978-3-642-37824-9_9
High-Field Magnetic Resonance Mapping of the Border Between Primary Motor (Area 4) and Somatosensory (Area 3a) Cortex in Ex-Vivo and In-Vivo Human Brains
S. Geyer (2013)
10.1007/s100440200005
Computer Vision and Pattern Recognition Techniques for 2-D and 3-D MR Cerebral Cortical Segmentation (Part I): A State-of-the-Art Review
J. Suri (2002)
10.1093/CERCOR/9.7.662
Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study.
H. Burton (1999)
10.1006/nimg.1997.0304
Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas
F. Rivier (1997)
10.1016/j.neuroscience.2013.08.039
Preattentive mechanisms of change detection in early auditory cortex: A 7Tesla fMRI study
G. Szycik (2013)
10.1111/j.1600-0447.2011.01816.x
Serotonin receptor, SERT mRNA and correlations with symptoms in males with alcohol dependence and suicide
P. Thompson (2012)
10.1007/978-3-540-34686-9_15
Telencephalon: Neocortex
(2008)
10.1016/j.neuroimage.2006.06.018
Increased local gyrification mapped in Williams syndrome
Christian Gaser (2006)
10.1002/hbm.20190
Attention to visual speech gestures enhances hemodynamic activity in the left planum temporale
J. Pekkola (2006)
10.1038/nn871
Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians
P. Schneider (2002)
10.1016/B978-012547626-3/50027-2
CHAPTER 26 – MOTOR CORTEX
M. Matelli (2004)
A Graph-Based Decoding Model for Incomplete Multi-Subject fMRI Functional Alignment
Weida Li (2019)
10.1016/S1361-8415(00)00033-5
Building 3D sulcal models using local geometry
A. Caunce (2001)
10.1016/S0887-8994(00)00260-5
Ocular dominance in anterior visual cortex in a child demonstrated by the use of fMRI.
A. Miki (2001)
10.1037/0894-4105.18.4.738
Sex-linked differences in the anatomy of the perisylvian language cortex: a volumetric MRI study of gray matter volumes.
T. A. Knaus (2004)
La disminución volumétrica del núcleo caudado derecho como fenotipo neuroanatómico del trastorno por déficit de atención con hiperactividad pediátrico. Un análisis morfométrico fronto-caudado por resonancia magnética estructural
Soliva Vila (2007)
See more
Semantic Scholar Logo Some data provided by SemanticScholar