Online citations, reference lists, and bibliographies.
← Back to Search

Red/Far Red Light Controls Arbuscular Mycorrhizal Colonization Via Jasmonic Acid And Strigolactone Signaling.

M. Nagata, Naoya Yamamoto, Tamaki Shigeyama, Yohei Terasawa, T. Anai, T. Sakai, S. Inada, S. Arima, M. Hashiguchi, R. Akashi, Hideyuki Nakayama, D. Ueno, A. Hirsch, A. Suzuki
Published 2015 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Establishment of a nitrogen-fixing symbiosis between legumes and rhizobia not only requires sufficient photosynthate, but also the sensing of the ratio of red to far red (R/FR) light. Here, we show that R/FR light sensing also positively influences the arbuscular mycorrhizal (AM) symbiosis of a legume and a non-legume through jasmonic acid (JA) and strigolactone (SL) signaling. The level of AM colonization in high R/FR light-grown tomato and Lotus japonicus significantly increased compared with that determined for low R/FR light-grown plants. Transcripts for JA-related genes were also elevated under high R/FR conditions. The root exudates derived from high R/FR light-grown plants contained more (+)-5-deoxystrigol, an AM-fungal hyphal branching inducer, than those from low R/FR light-grown plants. In summary, high R/FR light changes not only the levels of JA and SL synthesis, but also the composition of plant root exudates released into the rhizosphere, in this way augmenting the AM symbiosis.
This paper references
10.1111/J.1469-8137.1980.TB04556.X
AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS
M. Giovannetti (1980)
10.1038/363067A0
Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants
L. Simon (1993)
10.1073/PNAS.91.25.11841
Four hundred-million-year-old vesicular arbuscular mycorrhizae.
W. Remy (1994)
10.1046/J.1365-3040.1997.D01-104.X
The shade avoidance syndrome: multiple responses mediated by multiple phytochromes
H. Smith (1997)
10.1126/SCIENCE.289.5486.1920
Glomalean fungi from the Ordovician.
D. Redecker (2000)
10.1101/GAD.14.3.257
Light: an indicator of time and place.
M. Neff (2000)
10.1126/SCIENCE.1061457
Molecular Evidence for the Early Colonization of Land by Fungi and Plants
D. Heckman (2001)
10.1104/pp.006007
Induction of Jasmonate Biosynthesis in Arbuscular Mycorrhizal Barley Roots1,2
B. Hause (2002)
10.1023/A:1004630524168
Does far-red light affect growth and mycorrhizas of Scots pine seedlings grown in forest soil?
T. M. de la Rosa (2004)
10.1038/nature03608
Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
K. Akiyama (2005)
10.1146/ANNUREV.MICRO.58.030603.123749
Signaling in the arbuscular mycorrhizal symbiosis.
M. Harrison (2005)
10.1104/pp.105.069054
Suppression of Allene Oxide Cyclase in Hairy Roots of Medicago truncatula Reduces Jasmonate Levels and the Degree of Mycorrhization with Glomus intraradices1[w]
Stanislav Isayenkov (2005)
10.1093/AOB/MCL063
Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots.
K. Akiyama (2006)
10.1093/JXB/ERM096
Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression.
G. Xu (2007)
10.3390/12071290
Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions.
S. Steinkellner (2007)
10.1111/j.1399-3054.2008.01081.x
Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning.
Miriam Tejeda-Sartorius (2008)
10.1007/BF02913343
Growth response of threeFestuca rubra clones to light quality and arbuscular mycorrhiza
H. Skálová (2008)
10.1111/j.1469-8137.2008.02725.x
Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus.
Mike Guether (2009)
10.1111/j.1365-313X.2009.03824.x
Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus.
N. Takeda (2009)
10.1016/j.phytochem.2009.07.003
The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms.
B. Hause (2009)
10.1111/j.1365-313X.2009.04056.x
SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato.
Jonathan T Vogel (2010)
10.1093/jxb/erp304
Phytochrome functions in Arabidopsis development.
K. Franklin (2010)
10.1093/jxb/erq089
Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway
J. A. López-Ráez (2010)
10.1038/nchembio.435
A small-molecule screen identifies new functions for the plant hormone strigolactone.
Y. Tsuchiya (2010)
10.1093/pcp/pcq058
Structural Requirements of Strigolactones for Hyphal Branching in AM Fungi
K. Akiyama (2010)
10.1094/MPMI-09-10-0220
Activation of a Lotus japonicus subtilase gene during arbuscular mycorrhiza is dependent on the common symbiosis genes and two cis-active promoter regions.
N. Takeda (2011)
10.1016/j.jplph.2011.05.022
Light is a positive regulator of strigolactone levels in tomato roots.
H. Koltai (2011)
10.1073/pnas.1105892108
Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling
A. Suzuki (2011)
10.1016/j.tplants.2010.12.001
Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals.
C. Ballaré (2011)
10.1039/c0mb00141d
Metabolomic anatomy of an animal model revealing homeostatic imbalances in dyslipidaemia.
Takushi Ooga (2011)
10.4051/IBC.2011.3.1.0001
Systematic Development of Tomato BioResources in Japan
T. Ariizumi (2011)
10.1016/j.jplph.2010.08.011
Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato.
J. A. López-Ráez (2011)
Lotus japonicus nodulation
A. Suzuki (2011)
Activation of a Lotus japonicus subtilase gene during arbuscular mycorrhizal
N. Takeda (2011)
10.1007/s00344-012-9304-6
Strigolactones: New Physiological Roles for an Ancient Signal
E. Foo (2012)
10.1199/tab.0157
Shade Avoidance
J. Casal (2012)
10.1093/jxb/ers010
Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling
R. León-Morcillo (2012)
10.1111/j.1469-8137.2012.04265.x
The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis.
W. Kohlen (2012)
10.1007/s11306-012-0452-2
Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry
K. Kami (2012)
10.1104/pp.112.200733
Canopy Light and Plant Health1
C. Ballaré (2012)
10.4067/S0718-95162013005000012
Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels.
J. Beltrano (2013)
10.1016/j.biotechadv.2013.12.005
The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments.
Sajid M Nadeem (2014)
10.1371/journal.pone.0123422
Full Establishment of Arbuscular Mycorrhizal Symbiosis in Rice Occurs Independently of Enzymatic Jasmonate Biosynthesis
C. Gutjahr (2015)



This paper is referenced by
10.1016/J.CRMICR.2021.100026
Involvement of strigolactone hormone in root development, influence and interaction with mycorrhizal fungi in plant: Mini-review
Debasis Mitra (2021)
10.1101/2021.06.07.447186
Conservation and diversity in transcriptional responses among host plants forming distinct arbuscular mycorrhizal morphotypes
Takaya Tominaga (2021)
10.1016/j.tplants.2020.12.006
Shade Avoidance: Expanding the Color and Hormone Palette.
G. L. Fernández-Milmanda (2021)
10.3389/fpls.2021.631810
Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions
Z. Iqbal (2021)
10.1080/00103624.2021.1892728
Impacts of Arbuscular Mycorrhizal Fungi on Rice Growth, Development, and Stress Management With a Particular Emphasis on Strigolactone Effects on Root Development
Debasis Mitra (2021)
A SYMBIOSIS BETWEEN A DARK SEPTATE FUNGUS, AN ARBUSCULAR MYCORRHIZA, AND TWO PLANTS NATIVE TO THE SAGEBRUSH STEPPE
Marcelo Serpe (2020)
10.14720/aas.2020.116.1.1652
The role of far-red light (FR) in photomorphogenesis and its use in greenhouse plant production
B. Kump (2020)
10.1007/978-3-030-49924-2_7
7 Genetics and Genomics Decipher Partner Biology in Arbuscular Mycorrhizas
L. Lanfranco (2020)
10.1016/j.molp.2020.11.021
Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture.
R. Pierik (2020)
10.1038/s41467-020-15893-7
Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching
Yurong Xie (2020)
10.1093/femsec/fiaa040
Modulation of insect induced oxidative stress responses by microbial fertilizers in Brassica juncea.
G. Sharma (2020)
10.1016/J.FCR.2019.04.019
Topical shading substantially inhibits vegetative branching by altering leaf photosynthesis and hormone contents of cotton plants
Ting Li (2019)
10.1002/9781119409144.ch61
Role of phytohormones in arbuscular mycorrhiza development
D. Das (2019)
10.3389/fpls.2019.00422
Filling the Gap: Functional Clustering of ABC Proteins for the Investigation of Hormonal Transport in planta
L. Borghi (2019)
10.1007/978-3-030-12153-2
Strigolactones - Biology and Applications
H. Koltai (2019)
10.1016/j.isci.2019.11.035
Canopy Light Quality Modulates Stress Responses in Plants
Sarah Courbier (2019)
10.1007/978-3-030-12153-2_4
The role of strigolactones in plant-microbe interactions
S. Rochange (2019)
10.1038/s41598-018-29020-6
Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat
P. De Vita (2018)
10.1016/j.micpath.2017.11.049
Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max).
Naveed Ur Rehman (2018)
10.1093/pcp/pcy024
Transcriptional Regulation of Arbuscular Mycorrhiza Development
P. Pimprikar (2018)
Transcriptional regulation of RAM1, a central regulator ofarbuscule branching in arbuscular mycorrhiza symbiosis
P. S. Pimprikar (2018)
10.1104/pp.17.01143
Light Signaling-Dependent Regulation of Photoinhibition and Photoprotection in Tomato1
F. Wang (2017)
10.1146/annurev-arplant-042916-040925
Strigolactone Signaling and Evolution.
M. Waters (2017)
10.1186/s12870-017-1182-4
Functional characterization of soybean strigolactone biosynthesis and signaling genes in Arabidopsis MAX mutants and GmMAX3 in soybean nodulation
Basir Ui Haq (2017)
10.1111/pce.12914
The shade-avoidance syndrome: multiple signals and ecological consequences.
C. Ballaré (2017)
10.20710/DOJO.87.5_373
土壌微生物が創る共生の世界―その先端的研究事例と農業への応用的研究展開 5.作物圏共生微生物の生態研究の現状と農業・食品産業への応用の可能性
成志 池田 (2016)
Title Blue Light Perception by Both Roots and Rhizobia Inhibits Nodule Formation in Lotus japonicus Permalink
A. Shimomura (2016)
10.1007/s11103-016-0480-9
Jasmonates: signal transduction components and their roles in environmental stress responses
Jonas Goossens (2016)
10.1094/MPMI-03-16-0048-R
Blue Light Perception by Both Roots and Rhizobia Inhibits Nodule Formation in Lotus japonicus.
Aya Shimomura (2016)
10.1016/j.cub.2016.01.069
A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching
P. Pimprikar (2016)
10.1080/15592324.2016.1187356
Enhanced hyphal growth of arbuscular mycorrhizae by root exudates derived from high R/FR treated Lotus japonicus
M. Nagata (2016)
10.1007/s00425-015-2435-9
How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?
J. A. López-Ráez (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar