Online citations, reference lists, and bibliographies.

Instability Investigation On Fluid-loaded Pre-stretched Cylindrical Membranes

Amit Patil, Arne B. Nordmark, Anders Eriksson
Published 2015 · Mathematics
Cite This
Download PDF
Analyze on Scholarcy
Share
This paper discusses the evaluation of instabilities on the quasi-static equilibrium path of fluid-loaded pre-stretched cylindrical membranes and the switching to a secondary branch at a bifurcation point. The membrane is represented by only the in-plane stress components, for which an incompressible, isotropic hyperelastic material model is assumed. The free inflation problem yields governing equations and boundary conditions, which are discretized by finite differences and solved by a Newton–Raphson method. An incremental arclength-cubic extrapolation method is used to find generalized equilibrium paths, with different parametrizations. Limit points and bifurcation points are observed on the equilibrium path when fluid level is seen as the controlling parameter. An eigen-mode injection method is employed to switch to a secondary equilibrium branch at the bifurcation point. A limit point with respect to fluid level is observed for a partially filled membrane when the aspect ratio (length/radius) is high, whereas for smaller aspect ratios, the limit point with respect to fluid level is observed at over-filling. Pre-stretch is observed to have a stiffening effect in the pre-limit zone and a softening effect in the post-limit zone.
This paper references
10.1007/S11012-015-0102-7
Constrained inflation of a stretched hyperelastic membrane inside an elastic cone
Amit Patil (2015)
10.1016/0022-5096(78)90017-0
On the incremental equations in non-linear elasticity — II. Bifurcation of pressurized spherical shells
David M. Haughton (1978)
10.1016/J.IJSOLSTR.2012.10.004
Axisymmetric bifurcations of thick spherical shells under inflation and compression
Gal deBotton (2013)
10.1016/0020-7462(70)90027-2
Liquid filled membranes
Don L. Boyer (1970)
10.1098/rspa.1990.0055
Tension-field theory
David J. Steigmann (1990)
10.1016/0022-460X(90)90528-8
Application of the incremental harmonic balance method to cubic non-linearity systems
Yau K. Cheung (1990)
10.1016/0020-7683(92)90096-C
Inflation of an elastic cylindrical membrane: Non-linear deformation and instability
Roger E. Khayat (1992)
10.1243/03093247V222115
Free and constrained inflation of elastic membranes in relation to thermoforming — axisymmetric problems
J. M. Charrier (1987)
10.1016/S0020-7683(00)00151-7
Finite axisymmetric deformations of an initially stressed fluid-filled cylindrical membrane
Djenane Cordeiro Pamplona (2001)
10.1098/rsta.2009.0118
Axial-symmetry breaking in constrained membranes
Paolo Biscari (2009)
10.1002/nme.1620372203
Inflation of hyperelastic cylindrical membranes as applied to blow moulding. Part I. Axisymmetric case
Roger E. Khayat (1994)
10.1016/0020-7403(71)90013-0
The tensile instability of an inflated cylindrical membrane as affected by an axial load
Helen M Alexander (1971)
10.1016/S0020-7683(96)00119-9
Stability and bifurcation of finite deformations of elastic cylindrical membranes—Part I. Stability analysis
Yi-chao Chen (1997)
10.1016/S0889-9746(89)90038-8
Vibrations of an inextensible cylindrical membrane inflated with liquid
J.-C. Hsieh (1989)
10.1016/J.JMPS.2013.11.013
On the static and dynamic analysis of inflated hyperelastic circular membranes
Abhijit Chaudhuri (2014)
10.1016/0020-7462(95)00019-K
Point loads on a hemispherical elastic membrane
Xiaoguang Li (1995)
10.1002/cnm.2557
Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration.
David Moral Martín (2013)
10.1002/1097-0207(20010220)50:5<1233::AID-NME77>3.0.CO;2-W
Dynamic inflation of non‐linear elastic and viscoelastic rubber‐like membranes
Erwan Verron (2001)
10.1016/0022-5096(79)90027-9
Bifurcation of inflated circular cylinders of elastic material under axial loading—II. Exact theory for thick-walled tubes
David R. Haughton (1979)
10.1093/imamat/56.3.303
Axisymmetric elastic membranes subjected to fluid loading
David M. Haughton (1996)
10.1016/J.EUROMECHSOL.2013.02.007
Finite inflation of an initially stretched hyperelastic circular membrane
Amit Patil (2013)
10.1115/1.3169168
Load-Supporting Fluid-Filled Cylindrical Membranes
Victor Namias (1985)
10.1016/J.CMA.2012.05.012
Instability of hyper-elastic balloon-shaped space membranes under pressure loads
Anders Eriksson (2012)
10.1016/0045-7949(95)00114-V
Computing critical points and secondary paths in nonlinear structural stability analysis by the finite element method
Jicong Shi (1996)
10.1016/J.IJNONLINMEC.2012.09.008
Finite inflation analysis of a hyperelastic toroidal membrane of initially circular cross-section
Ganesh Tamadapu (2013)
10.1007/S00707-010-0418-2
On the contact of an inflated spherical membrane-fluid structure with a rigid conical indenter
Touqeer Sohail (2011)
10.1122/1.551017
Dynamic inflation of hyperelastic spherical membranes
Erwan Verron (1999)
10.1016/0045-7825(94)90163-5
Fold lines for sensitivity analyses in structural instability
Anders S. Eriksson (1994)
10.1016/J.IJSOLSTR.2015.04.025
Contact mechanics of a circular membrane inflated against a deformable substrate
Amit Patil (2015)
10.1016/J.IJNONLINMEC.2011.05.011
Fluid pressure loading of a hyperelastic membrane
A. P. S. Selvadurai (2012)
10.1016/0045-7825(96)01047-X
The post-critical analysis of axisymmetric hyper-elastic membranes by the finite element method
Jing Li Shi (1996)
10.1108/eb023727
A simple method for the calculation of postcritical branches
Werner Wagner (1988)
10.1006/jfls.1995.1053
A Complete Linear Theory for a Two-Dimensional Floating and Liquid-Filled Membrane Structure in Waves
Rui Zhao (1995)
10.1122/1.549185
The Inflation of Axially Symmetric Membranes by Linearly Varying Hydrostatic Pressure
Lee-po Yu (1970)
10.1016/j.euromechsol.2008.11.006
A semi-analytical approach for the nonlinear two-dimensional analysis of fluid-filled thin-walled pliable membrane tubes
Esmaeal Ghavanloo (2009)
10.1103/PHYSREVE.88.053201
Geometrical feature of the scaling behavior of the limit-point pressure of inflated hyperelastic membranes.
Ganesh Tamadapu (2013)
10.1016/0020-7683(79)90081-7
An incremental approach to the solution of snapping and buckling problems
E. Riks (1979)
10.1098/rspa.2004.1419
A nonlinear, anisotropic and axisymmetric model for balloon angioplasty
D. A. Eftaxiopoulos (2005)
10.1093/imamat/36.1.85
The Relaxed Energy Density for Isotropic Elastic Membranes
Allen C. Pipkin (1986)
10.1016/J.COMPSTRUC.2014.07.021
Non-unique response of Mooney-Rivlin model in bi-axial membrane stress
Anders Eriksson (2014)
10.1016/0020-7225(71)90017-6
Tensile instability of initially spherical balloons
Harold Alexander (1971)
10.1016/S0263-8231(03)00023-5
Numerical analysis of rubber balloons
Erwan Verron (2003)
10.1063/1.3054128
Flow of artificial microcapsules in microfluidic channels: A method for determining the elastic properties of the membrane
Yannick Lefebvre (2008)
10.1098/rspa.2014.0282
Free and constrained inflation of a pre-stretched cylindrical membrane
Amit Patil (2014)
10.1115/1.2894115
The mechanics of axially symmetric liposomes.
Djenane Cordeiro Pamplona (1993)
10.1016/0020-7462(95)00004-8
Finite deformation of a pressurized toroidal membrane
Xiaoguang Li (1995)
Inflatable dams
HO Anwar (1967)
10.1115/1.3138234
Mechanics and Thermodynamics of Biomembranes
Evan Evans (2017)



This paper is referenced by
10.1007/s11071-020-05661-z
Intra-well and cross-well chaos in membranes and shells liable to buckling
Frederico M. A. Silva (2020)
10.1016/J.IJNONLINMEC.2016.08.002
Cylindrical membrane partially stretched on a rigid cylinder
Alexey M. Kolesnikov (2016)
10.1016/J.IJMECSCI.2018.06.034
Mechanical behaviour of short membranous liquid-filled cylinders under axial loadings
Majid Soleimani (2018)
10.1016/J.IJSOLSTR.2017.12.015
Instabilities in the axisymmetric magnetoelastic deformation of a cylindrical membrane
Narravula Harshavardhan Reddy (2017)
10.1016/J.IJNONLINMEC.2017.09.004
Instability investigation for rotating thin spherical membrane
Yang Zhou (2017)
10.1016/J.IJNONLINMEC.2017.06.017
Limit points in the free inflation of a magnetoelastic toroidal membrane
Narravula Harshavardhan Reddy (2017)
10.1016/J.EUROMECHSOL.2015.05.015
Wrinkling of cylindrical membranes with non-uniform thickness
Amit Patil (2015)
10.1016/J.IJNONLINMEC.2017.08.008
Tension of a cylindrical membrane partially stretched over a rigid cylinder
Alexey M. Kolesnikov (2017)
10.1016/J.IJMECSCI.2017.07.011
Multi-parametric stability investigation for thin spherical membranes with contacts
Yang Zhou (2017)
10.1016/J.IJSOLSTR.2015.04.025
Contact mechanics of a circular membrane inflated against a deformable substrate
Amit Patil (2015)
10.1016/J.JMPS.2016.05.014
Instabilities of wrinkled membranes with pressure loadings
Amit Patil (2016)
Inflation and Instabilities of Hyperelastic Membranes
Amit Patil (2016)
10.1007/s00466-019-01755-7
A wrinkling model for pneumatic membranes and the complementarity computational framework
Liang Zhang (2020)
Semantic Scholar Logo Some data provided by SemanticScholar