Online citations, reference lists, and bibliographies.
← Back to Search

Genome-wide Association Mapping And Genomic Prediction Unravels CBSD Resistance In A Manihot Esculenta Breeding Population

Siraj Ismail Kayondo, Dunia Pino Del Carpio, Roberto Lozano, Alfred Ozimati, Marnin Wolfe, Yona Baguma, Vernon Gracen, Offei Samuel, Morag Ferguson, Robert Kawuki, Jean-Luc Jannink

Cite This
Download PDF
Analyze on Scholarcy
Share
AbstractCassava (Manihot esculenta Crantz), a key carbohydrate dietary source for millions of people in Africa, faces severe yield loses due to two viral diseases: cassava brown streak disease (CBSD) and cassava mosaic disease (CMD). The completion of the cassava genome sequence and the whole genome marker profiling of clones from African breeding programs (www.nextgencassava.org) provides cassava breeders the opportunity to deploy additional breeding strategies and develop superior varieties with both farmer and industry preferred traits. Here the identification of genomic segments associated with resistance to CBSD foliar symptoms and root necrosis as measured in two breeding panels at different growth stages and locations is reported. Using genome-wide association mapping and genomic prediction models we describe the genetic architecture for CBSD severity and identify loci strongly associated on chromosomes 4 and 11. Moreover, the significantly associated region on chromosome 4 colocalises with a Manihot glaziovii introgression segment and the significant SNP markers on chromosome 11 are situated within a cluster of nucleotide-binding site leucine-rich repeat (NBS-LRR) genes previously described in cassava. Overall, predictive accuracy values found in this study varied between CBSD severity traits and across GS models with Random Forest and RKHS showing the highest predictive accuracies for foliar and root CBSD severity scores.