Online citations, reference lists, and bibliographies.
← Back to Search

Hydroxyl Carlactone Derivatives Are Predominant Strigolactones In Arabidopsis

Kaori Yoneyama, Kohki Akiyama, Philip B. Brewer, Narumi Mori, Miyuki Kawada, Shinsuke Haruta, Hisashi Nishiwaki, Satoshi Yamauchi, Xiaonan Xie, Mikihisa Umehara, Christine A. Beveridge, Koichi Yoneyama, Takahito Nomura

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
ABSTRACTStrigolactones (SLs) regulate important aspects of plant growth and stress responses. Many diverse types of SL occur in plants, but a complete picture of biosynthesis remains unclear. In Arabidopsis thaliana, we have demonstrated that MAX1, a cytochrome P450 monooxygenase, converts carlactone (CL) into carlactonoic acid (CLA), and that LBO, a 2-oxoglutarate-dependent dioxygenase, converts methyl carlactonoate (MeCLA) into a metabolite called [MeCLA+16] Da. In the present study, feeding experiments with deuterated MeCLAs revealed that [MeCLA+16] Da is hydroxymethyl carlactonoate (1’-HO-MeCLA). Importantly, this LBO metabolite was detected in plants. Interestingly, other related compounds, methyl 4-hydroxycarlactonoate (4-HO-MeCLA) and methyl 16-hydroxycarlactonoate (16-HO-MeCLA) were also found to accumulate in lbo mutants. 3-HO-, 4-HO- and 16-HO-CL were detected in plants, but their expected corresponding metabolites, HO-CLAs, were absent in max1 mutants. These results suggest that HO-CL derivatives are predominant SLs in Arabidopsis, produced through MAX1 and LBO.