Online citations, reference lists, and bibliographies.
← Back to Search

3D Neuronal Mitochondrial Morphology In Axons, Dendrites, And Somata Of The Aging Mouse Hippocampus

Julie Faitg, Clay Lacefield, Tracey Davey, Kathryn White, Ross Laws, Stylianos Kosmidis, Amy K Reeve, Eric R Kandel, Amy E Vincent, Martin Picard

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
SummaryThe brain’s ability to process complex informations relies on the constant supply of energy through aerobic respiration by mitochondria. Neurons contain three anatomically distinct compartments – the soma, dendrites, and projecting axons – which have different energetic and biochemical requirements, as well as different mitochondrial morphologies in cultured systems. Here we apply a quantitative three-dimensional electron microscopy approach to map mitochondrial network morphology and complexity in the mouse brain. We examine three neuronal sub-compartments – the soma, dendrites, myelinated axons – in the dentate gyrus and CA1 of the mouse hippocampus, two subregions with distinct principal cell types and functions. We also establish compartment-specific differences in mitochondrial morphology across these cell types between young and old mice, highlighting differences in age-related morphological recalibrations. Overall, these data define the nature of the neuronal mitochondrial network in the mouse hippocampus, providing a foundation to examine the role of mitochondrial morpho-function in the aging brain.