Online citations, reference lists, and bibliographies.
← Back to Search

Phonon Thermal Conduction In Graphene: Role Of Umklapp And Edge Roughness Scattering

D. Nika, E. Pokatilov, A. Askerov, A. Balandin
Published 2009 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
We investigated theoretically the phonon thermal conductivity of single-layer graphene. The phonon dispersion for all polarizations and crystallographic directions in graphene lattice was obtained using the valenceforce field method. The three-phonon Umklapp processes were treated exactly using an accurate phonon dispersion and Brillouin zone, and accounting for all phonon relaxation channels allowed by the momentum and energy conservation laws. The uniqueness of graphene was reflected in the two-dimensional phonon density of states and restrictions on the phonon Umklapp scattering phase-space. The phonon scattering on defects and graphene edges has also been included in the model. The calculations were performed for the Gruneisen parameter, which was determined from the ab initio theory as a function of the phonon wave vector and polarization branch, and for a range of values from experiments. It was found that the near roomtemperature thermal conductivity of single-layer graphene, calculated with a realistic Gruneisen parameter, is in the range 2000‐5000 W /mK depending on the flake width, defect concentration and roughness of the edges. Owing to the long phonon mean free path the graphene edges produce strong effect on thermal conductivity even at room temperature. The obtained results are in good agreement with the recent measurements of the thermal conductivity of suspended graphene.
This paper references
10.1063/1.3057244
In: Electrons and Phonons
J. Ziman (1961)
10.1098/rspa.1962.0153
A general valence force field for diamond
M. Musgrave (1962)
10.1038/196119a0
Solid-State Physics
G. V. Chester (1962)
10.1103/PHYSREV.132.2461
Analysis of Lattice Thermal Conductivity
M. G. Holland (1963)
10.1103/PHYSREV.145.637
Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure
P. Keating (1966)
10.1080/14786436708221644
The thermal conductivity of graphite parallel to the basal planes and the velocity of phonons in the ‘out-of-plane’ acoustic mode
B. Kelly (1967)
10.1051/JPHYS:019670028011-12095100
Conductibilité thermique de graphite quasi monocristallin et effets d'irradiation aux neutrons. - I. mesures
A. D. Combarieu (1967)
10.1103/PHYSREVB.1.4005
Elastic Properties of ZnS Structure Semiconductors
R. Martin (1970)
10.1063/1.3253134
Molten salts: Volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data
G. Janz (1974)
The Physics of Phonons ͑IOP Thermal Conduction in Semiconductors ͑Wiley
P Srivastava (1988)
10.1103/PHYSREVB.39.12598
Graphite under pressure: Equation of state and first-order Raman modes.
Hanfland (1989)
10.1103/PHYSREVB.42.11469
Bond softening in monolayer graphite formed on transition-metal carbide surfaces.
Aizawa (1990)
10.1103/PHYSREVB.48.6033
Anharmonic thermal resistivity of dielectric crystals at low temperatures.
B. Han (1993)
10.1103/PHYSREVLETT.70.3764
Thermal conductivity of isotopically modified single crystal diamond.
Lanhua Wei (1993)
10.1016/0008-6223(94)90096-5
Thermal conductivity of graphite in the basal plane
P. G. Klemens (1994)
10.1103/PHYSREVB.58.1544
Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well
A. A. Balandin (1998)
10.1103/PHYSREVB.59.R2514
THERMAL CONDUCTIVITY OF SINGLE-WALLED CARBON NANOTUBES
Joseph Hone (1999)
10.1063/1.373723
In-plane lattice thermal conductivity of a quantum-dot superlattice
A. Khitun (2000)
10.1106/7FP2-QBLN-TJPA-NC66
Theory of the A-Plane Thermal Conductivity of Graphite
P. Klemens (2000)
10.1103/PHYSREVB.61.R13389
SHEAR STRAIN IN CARBON NANOTUBES UNDER HYDROSTATIC PRESSURE
S. Reich (2000)
10.1088/0957-4484/11/2/305
Thermal conductivity of carbon nanotubes
Jianwei Che (2000)
10.1103/PhysRevLett.84.4613
Unusually high thermal conductivity of carbon nanotubes
Berber (2000)
10.1103/PhysRevLett.87.215502
Thermal transport measurements of individual multiwalled nanotubes.
P. Kim (2001)
10.1063/1.1427153
Effect of dislocations on thermal conductivity of GaN layers
D. Kotchetkov (2001)
10.1088/0957-4484/12/1/305
TEMPERATURE DEPENDENCE OF THE THERMAL CONDUCTIVITY OF SINGLE-WALL CARBON NANOTUBES
M. Osman (2001)
10.1063/1.1345515
Phonon heat conduction in a semiconductor nanowire
J. Zou (2001)
10.1134/1.1366002
Grüneisen parameters for layered crystals
N. Abdullaev (2001)
10.1016/S0266-3538(02)00113-6
Equivalent-Continuum Modeling of Nano-Structured Materials
M. Gregory (2001)
10.1063/1.1391230
Modification of the three-phonon Umklapp process in a quantum wire
A. Khitun (2001)
10.1007/s100190100124
Nanotechnology
J. Gilman (2001)
10.1023/A:1006776107140
Theory of Thermal Conduction in Thin Ceramic Films
P. Klemens (2001)
10.1103/PHYSREVB.65.033408
Superhard phase composed of single-wall carbon nanotubes
M. Popov (2002)
10.1103/PHYSREVB.65.073403
Ab initio determination of the phonon deformation potentials of graphene
C. Thomsen (2002)
10.1063/1.1497704
Thermal conductivity of GaN films: Effects of impurities and dislocations
J. Zou (2002)
10.1134/1.1514773
On the role played by bending vibrations in heat transfer in layered crystals
N. Abdullaev (2002)
10.1016/S0925-9635(02)00335-7
Superhard phase of single wall carbon nanotube: comparison with fullerite C60 and diamond
M. Popov (2003)
10.1103/PHYSREVB.68.035425
Thermal expansion of carbon structures
P. Schelling (2003)
10.1016/j.ssc.2004.04.042
The phonon dispersion of graphite revisited
L. Wirtz (2004)
10.1103/PHYSREVB.69.073407
Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process
J. Cao (2004)
10.1103/PHYSREVLETT.92.075501
Phonon Dispersion in Graphite
J. Maultzsch (2004)
10.1126/SCIENCE.1102896
Electric Field Effect in Atomically Thin Carbon Films
K. Novoselov (2004)
1 ͑1974͒. 56 See, for example, specifications and thermal conductivity values for commercial PGS graphite at http://industrial
C Y Ho (2004)
10.1021/NL051044E
Thermal conductance and thermopower of an individual single-wall carbon nanotube.
Choongho Yu (2005)
10.1103/PHYSREVLETT.95.096105
Carbon nanotube ballistic thermal conductance and its limits.
N. Mingo (2005)
10.1038/nature04233
Two-dimensional gas of massless Dirac fermions in graphene
K. Novoselov (2005)
10.1016/J.DIAMOND.2004.12.002
Thermal conductivity of CVD diamond at elevated temperatures
A. Sukhadolau (2005)
10.1103/PHYSREVLETT.95.065502
Measuring the thermal conductivity of a single carbon nanotube.
M. Fujii (2005)
10.1103/PhysRevB.71.205214
First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives
N. Mounet (2005)
10.1038/nature04235
Experimental observation of the quantum Hall effect and Berry's phase in graphene
Y. Zhang (2005)
Science Nature Nat. Mater
S V Zhang (2005)
The “ recommended value ” is obtained by averaging over many results , including those reported by A . de Combarieu
M. Fujii (2005)
10.1038/nature04969
Graphene-based composite materials
S. Stankovich (2006)
10.1103/PHYSREVB.74.245413
Thickness of graphene and single-wall carbon nanotubes
Y. Huang (2006)
10.1063/1.2362601
Thermal conductivity of diamond-like carbon films
M. Shamsa (2006)
10.1021/nl052145f
Thermal conductance of an individual single-wall carbon nanotube above room temperature.
E. Pop (2006)
10.1063/1.2364130
Thermal conduction in nanocrystalline diamond films : Effects of the grain boundary scattering and nitrogen doping
W. Liu (2006)
10.1103/PhysRevLett.96.036801
Disorder induced localized States in graphene.
V. Pereira (2006)
10.1063/1.2771379
Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices
I. Calizo (2007)
10.1038/NMAT1849
The rise of graphene.
Andre K. Geim (2007)
10.1103/PhysRevLett.99.176802
Phonon anharmonicities in graphite and graphene.
N. Bonini (2007)
10.1166/JNO.2007.303
Kinetic and Quantum Models for Nanoelectronic and Optoelectronic Device Simulation
A. Fedoseyev (2007)
10.1021/NL071033G
Temperature dependence of the Raman spectra of graphene and graphene multilayers.
I. Calizo (2007)
10.1063/1.2907977
PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
S. Ghosh (2008)
10.1021/nl0731872
Superior thermal conductivity of single-layer graphene.
A. Balandin (2008)
10.1103/PhysRevLett.100.177207
Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection.
M. Wimmer (2008)
10.1063/1.2907865
Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon
M. Shamsa (2008)
10.1016/j.otohns.2009.05.016
Nature
R. Rosenfeld (2009)
10.5860/choice.42-2552a
Encyclopedia of nanoscience and nanotechnology
H. Nalwa (2011)
54 The " recommended value " is obtained by averaging over many results, including those reported by
M Fujii
Nano Lett
L Yu
Nano Lett
E Pop
Phys. Rev. B
P K Schelling
Compos. Sci. Technol
M Odegard
Phys. Rev. B
S Thomsen
Electrons and Phonons ͑Clarendon Press
M Ziman
Phys. Rev. B
R Aizawa
Optoelectron. 2, 234 ͑2007͒
A I Fedoseyev
Phys. Rev. Lett
S Berber
ROLE… PHYSICAL REVIEW B
Phonon Thermal
Phys. Rev. Lett
L Kim
Phys. Solid State Phys. Rev. Lett
A Abdullaev
Appl. Phys. Lett
I Ghosh
Phys. Rev. B
M Popov
Diamond Relat. Mater
M Popov
Phys. Rev. B
A V Inyushkin
Phys. Rev. B
M Hone
Carbon Phys. Rev. B Philos. Mag
P G Klemens
Appl. Phys. Lett. J. Appl. Phys
A Khitun
Appl. Phys. Lett
D Kotchetkov
Diamond Relat. Mater
A V Sukhadolau
J. Appl. Phys
S Shamsa
Phys. Rev. B
M Hanfland
Phys. Rev. Lett
I Wimmer
Appl. Phys. Lett
M Shamsa
474 ͑1962͒. 28 P. N. Keating, Phys. Rev. 145, 637 ͑1966͒. 29 R. M. Martin
P Musgrave
Phys. Rev. Lett
M Pereira
Phys. Rev. B
S Reich
Nanotechnology Phys. Rev. Lett. J. Nanosci. Nanotechnol
M A Osman
Phys. Solid State
A Abdullaev
Appl. Phys. Lett
L Liu
Phys. Rev. Lett
P K Wei
Int. J. Thermophys. Solid State Commun. Phys. Rev. Lett
G Klemens



This paper is referenced by
10.1016/J.IJHEATMASSTRANSFER.2021.121282
Heat vortices of ballistic and hydrodynamic phonon transport in two-dimensional materials
Chuang Zhang (2021)
10.1007/s10854-021-05944-0
Microstructure, mechanical, and thermal properties of graphene and carbon nanotube-reinforced Al2O3 nanocomposites
W. Shah (2021)
10.1016/J.POLYMER.2021.123697
Designing high thermal conductivity of polydimethylsiloxane filled with hybrid h-BN/MoS2 via molecular dynamics simulation
Yafei Wang (2021)
10.1016/J.COMMATSCI.2021.110477
Reviewing computational studies of defect formation and behaviors in carbon fiber structural units
Sara B. Isbill (2021)
10.1016/J.COMMATSCI.2021.110493
Investigating mechanical properties and thermal conductivity of 2D carbon-based materials by computational experiments
Luiz Felipe C. Pereira (2021)
10.1016/J.CARBON.2021.02.105
Interfacial heat transport in nano-carbon assemblies
L. Qiu (2021)
10.1016/J.NANOEN.2021.105948
Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications
Piao Cheng (2021)
10.1088/1361-6528/ac1a91
Novel thermoelectric performance of 2D 1T- Se2Te and SeTe2 with ultralow lattice thermal conductivity but high carrier mobility
ShaoBo Chen (2021)
10.1016/j.carbon.2020.12.086
A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites
Jie Wang (2021)
10.1016/J.SSC.2021.114249
Thermal conductivity of graphene/graphane/graphene heterostructure nanoribbons: Non-equilibrium molecular dynamics simulations
Jong-Chol Kim (2021)
10.1088/1361-6528/ac12ec
Thermal transport in monolayer zinc-sulfide: effects of length, temperature and vacancy defects
A S M Jannatul Islam (2021)
10.1016/j.mtener.2020.100582
Thermal transport measurement of three-dimensional graphene powders for application in energy devices
C. Li (2021)
10.1016/J.COMPOSITESA.2021.106357
A review of graphene reinforced Cu matrix composites for thermal management of smart electronics
S. Ali (2021)
10.1016/j.apsusc.2020.148248
Systematic investigations of the electron, phonon, elastic and thermal properties of monolayer so-MoS2 by first-principles calculations
Z. Wang (2021)
10.1007/s11432-020-3151-5
Filling the gap: thermal properties and device applications of graphene
Rui Wu (2021)
10.1039/d1cp02347k
Ultra-high thermal conductivities of tetrahedral carbon allotropes with non-simple structures.
Qiang Chen (2021)
10.1016/j.cclet.2020.10.030
High thermal conductivity of graphene and structure defects: Prospects for thermal applications in graphene sheets
Chenglong Cai (2021)
10.1039/d1nr01324f
Graphene and water-based elastomer nanocomposites - a review.
C. N. Nwosu (2021)
10.1016/J.APSUSC.2021.149463
Thermal Transport Property of Novel Two-dimensional Nitride Phosphorus: an ab initio Study
Bing Lv Calculation (2021)
10.1115/1.4050689
Analytical Models for Predicting the Nonlinear Stress–Strain Relationships and Behaviors of Two-Dimensional Carbon Materials
Zixin Xiong (2021)
A fast-converging scheme for the Phonon Boltzmann equation with dual relaxation times
Jia Liu (2021)
10.1007/978-3-030-18778-1_20
Thermal Transport for Nanostructured Materials
T. Çagin (2021)
10.1103/PHYSREVMATERIALS.5.034009
Anisotropic phonon thermal transport in nitrophosphorene monolayer
Armin Taheri (2021)
10.1039/d0nr09099a
The in-plane structure domain size of nm-thick MoSe2 uncovered by low-momentum phonon scattering.
Huan Lin (2021)
Thermal Transport in Graphene Composites: The Effect of Lateral Dimensions of Graphene Fillers
Sriharsha Sudhindra (2021)
10.1016/J.JSSC.2021.121963
Ab initio prediction of thermoelectric performance of monolayer BiSbTe3
Q. Xia (2021)
10.3390/molecules25184217
A Review on Graphene-Based Light Emitting Functional Devices
M. Junaid (2020)
10.1088/2053-1591/abb2cd
Lattice thermal conductivity of pure and doped (B, N) Graphene
S. Mann (2020)
10.3390/APP11083419
Phonons and Thermal Transport in Si/SiO2 Multishell Nanotubes: Atomistic Study
C. Isacova (2020)
10.1038/s41598-020-78472-2
Exceptional in-plane and interfacial thermal transport in graphene/2D-SiC van der Waals heterostructures
Md. Sherajul Islam (2020)
10.1002/adfm.201904228
Engineering the Thermal Conductivity of Functional Phase‐Change Materials for Heat Energy Conversion, Storage, and Utilization
Kunjie Yuan (2020)
Impressive Electronic Transport in Be$_2$C Monolayer Limited by Phonon
G. Sharma (2020)
See more
Semantic Scholar Logo Some data provided by SemanticScholar