Online citations, reference lists, and bibliographies.
← Back to Search

Self-tuned Quantum Dot Gain In Photonic Crystal Lasers.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. Andreani, E. Hu, P. Petroff, D. Bouwmeester
Published 2006 · Medicine, Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
We demonstrate that very few (2-4) quantum dots as a gain medium are sufficient to realize a photonic-crystal laser based on a high-quality nanocavity. Photon correlation measurements show a transition from a thermal to a coherent light state proving that lasing action occurs at ultralow thresholds. Observation of lasing is unexpected since the cavity mode is in general not resonant with the discrete quantum dot states and emission at those frequencies is suppressed. In this situation, the quasicontinuous quantum dot states become crucial since they provide an energy-transfer channel into the lasing mode, effectively leading to a self-tuned resonance for the gain medium.
This paper references
10.1103/PHYSREVB.69.035304
Temperature-dependent linewidth of charged excitons in semiconductor quantum dots: Strongly broadened ground state transitions due to acoustic phonon scattering
B. Urbaszek (2004)
10.1103/PHYSREVLETT.89.216804
Continuous absorption background and decoherence in quantum dots.
A. Vasanelli (2002)
Phys. Rev. A
G Björk (1994)
Appl. Phys. Lett
G Björk (1992)
Phys. Rev. B
A Kress (2005)
Corresponding author. Electronic address: strauf@physics.ucsb
Appl. Phys. Lett
P Michler (2000)
10.1063/1.1538312
Lasing from InGaAs quantum dots in an injection microdisk
L. Zhang (2003)
10.1109/3.777216
Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities
J. Vučković (1999)
10.1364/OPEX.13.001202
Fine-tuned high-Q photonic-crystal nanocavity.
Y. Akahane (2005)
10.1063/1.106693
On the linewidth of microcavity lasers
G. Björk (1992)
10.1117/1.601191
Diode Lasers and Photonic Integrated Circuits
L. Coldren (1995)
Photon. Nanostruct
L C Andreani (2004)
10.1126/SCIENCE.1109815
Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes
A. Badolato (2005)
Phys. Rev. Lett
E Moreau (2001)
Photon
L. C. Andreani (2004)
Nature (London) 425
Y. Akahane (2005)
Appl. Phys. Lett
M Roehner (1997)
Phys
G. Björk (1994)
10.1038/35016030
Optical emission from a charge-tunable quantum ring
R. J. Warburton (2000)
10.1109/2944.605656
InGaAs-GaAs quantum-dot lasers
D. Bimberg (1997)
Appl. Phys. Lett
M Garcia (1998)
10.1103/PhysRevB.71.241304
Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals
A. Kress (2005)
10.1063/1.109714
Threshold characteristics of semiconductor microdisk lasers
R. Slusher (1993)
Appl. Phys. Lett
K Hennessy (2005)
Appl. Phys. Lett
R E Slusher (1993)
10.1103/PHYSREVLETT.87.183601
Quantum Cascade of Photons in Semiconductor Quantum Dots
E. Moreau (2001)
35
J. Vuckovic (1999)
10.1103/PHYSREVA.50.1675
Definition of a laser threshold.
Björk (1994)
10.1063/1.1806251
Optical properties of single InAs quantum dots in close proximity to surfaces
C. Wang (2004)
10.1063/1.1992656
Tuning photonic crystal nanocavity modes by wet chemical digital etching
K. Hennessy (2005)
Nature (London) 424
K. J. Vahala (2003)
10.1103/PHYSREVB.63.155307
Acoustic phonon broadening mechanism in single quantum dot emission
L. Besombes (2001)
10.1038/nature02063
High-Q photonic nanocavity in a two-dimensional photonic crystal
Y. Akahane (2003)
10.1126/SCIENCE.1100968
Electrically Driven Single-Cell Photonic Crystal Laser
H. Park (2004)
1.32 1.33 0
Phys. Rev
Y.-S Choi
10.1103/PhysRevLett.93.237401
Dephasing in quantum dots: quadratic coupling to acoustic phonons.
E. Muljarov (2004)
10.1103/PHYSREVA.54.3553
Two simple expressions for the spontaneous emission factor beta.
van Exter MP (1996)
IEEE J. Sel. Top. Quantum Electron
D Bimberg (1997)
10.1063/1.126918
Laser emission from quantum dots in microdisk structures
P. Michler (2000)
10.1063/1.119587
LASER EMISSION FROM PHOTONIC DOTS
M. Röhner (1997)
10.1198/000313001750358509
APPL
A. Glen (2001)
10.1126/SCIENCE.284.5421.1819
Two-dimensional photonic band-Gap defect mode laser
Painter (1999)
Phys. Rev. A
M P Van Exter (1996)
Appl. Phys. Lett
L Z Zhang (2003)
10.1063/1.1647274
Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser
H. Ryu (2004)
Phys
L. Besombes (2004)
Phys. Rev. Lett. Phys. Rev. B
A Vasanelli (2002)
10.1063/1.121583
Electronic states tuning of InAs self-assembled quantum dots
J. Garcia (1998)
10.1103/PHYSREVA.49.4038
Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime.
Jin (1994)
10.1016/J.PHOTONICS.2004.07.003
Gap maps, diffraction losses, and exciton–polaritons in photonic crystal slabs
L. Andreani (2004)
Appl. Phys. Lett
C F Wang (2004)
10.1049/EL:20020650
Quantum dot photonic crystal lasers
T. Yoshie (2002)
10.1038/35016020
Hidden symmetries in the energy levels of excitonic ‘artificial atoms’
M. Bayer (2000)
IEEE J. Quantum Electron
J Vuckovic (1999)
Nature (London) Opt. Express
Y Akahane (2003)
Phys. Rev. A
R Jin (1994)
Science Electron. Lett
O Painter (1999)
Phys. Rev. B Phys. Rev. Lett
L Besombes (2001)
Phys
A. Vasanelli (2004)
Nature (London) 405
M. Bayer (2000)
Appl. Phys. Lett. Science
H.-Y Ryu (2004)



This paper is referenced by
10.1063/1.4807439
Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires
J. Canet-Ferrer (2013)
10.1103/PHYSREVE.74.046611
Nonlinear Bloch waves in resonantly doped photonic crystals.
A. Kaso (2006)
10.1364/LS.2007.LTUD4
Dynamics of Quantum Dot Photonic Crystal Lasers
B. Ellis (2007)
10.1103/PHYSREVE.78.045603
Local nanofluidic light sources in silicon photonic crystal microcavities.
S. Vignolini (2008)
10.1364/OE.19.014370
The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
C. Gies (2011)
10.1002/adma.201202778
On-chip quantum optics with quantum dot microcavities.
E. Stock (2013)
10.1103/PhysRevX.7.021045
Pump-Power-Driven Mode Switching in a Microcavity Device and Its Relation to Bose-Einstein Condensation
H. A. M. Leymann (2016)
10.1117/12.2321041
Enhancement of Purcell factor in all-dielectric dimer
Reena Dalal (2018)
10.1007/978-3-030-39333-5_8
Optically-Excited Polariton Condensates
Arash Rahimi-Iman (2020)
10.1109/JLT.2013.2262922
Wavelength Tuning by Bending a Flexible Photonic Crystal Laser
K. Hsu (2013)
Thresholdless transition to coherent emission at telecom wavelengths from coaxial nanolasers
Soren Kreinberg (2019)
10.1063/1.2960259
Nonlinear optical tuning of photonic crystal microcavities by near-field probe
S. Vignolini (2008)
10.1016/J.PHYSE.2009.10.016
Experimental mapping of the spatial and angular emission patterns in photonic crystal microcavities
Marco Abbarchi (2010)
10.1117/2.1201202.004117
Electrically driven photonic crystal cavities yield low-power optoelectronic devices
Gary Shambat (2012)
10.1063/1.4733726
Directional whispering gallery mode emission from Limaçon-shaped electrically pumped quantum dot micropillar lasers
F. Albert (2012)
10.1201/B17366-13
Whispering Gallery Mode in ZnO With Hexagonal Cross Section: Whispering Gallery Mode in ZnO With Hexagonal Cross Section
Rui Chen (2014)
10.1063/1.4979708
Realization of high-Q/V photonic crystal cavities defined by an effective Aubry-André-Harper bichromatic potential
A. Simbula (2017)
10.1021/acsphotonics.7b01253
Room-Temperature Lasing Action in GaN Quantum Wells in the Infrared 1.5 μm Region
V. Ho (2018)
10.1364/OE.18.008781
Nanobeam photonic crystal cavity quantum dot laser.
Yiyang Gong (2010)
10.1109/GROUP4.2009.5338318
Enhanced light emission from Erbium doped silicon photonic crystal nanocavities
M. Galli (2009)
The optical properties of photonic-crystal nanocavities containing plasmonic nanoparticles
Khalid N. Sediq (2016)
10.1088/2040-8978/13/7/075001
Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor
Yi Song (2011)
10.1117/12.2190097
Fabrication and characterization of near thresholdless lasers at room temperature
Ignacio Priéto (2015)
10.1088/1361-648X/ab5e15
Deterministically fabricated solid-state quantum-light sources.
S. Rodt (2019)
10.1063/5.0006767
Mode-field switching of nanolasers
(2020)
Couplage exciton-photon dans les nanostructures semiconductrices à grand gap
T. Guillet (2012)
10.1126/science.1223504
Plasmonic Nanolaser Using Epitaxially Grown Silver Film
Yu-Jung Lu (2012)
10.1063/1.2387966
Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers
B. Min (2006)
10.1063/1.2715107
Identification of Modes and Single Mode Operation of Sapphire-Bonded Photonic Crystal Lasers under Continuous-Wave Room Temperature Operation
Min-Hsiung Shih (2007)
10.1063/1.2775811
Single quantum dot spectroscopy using a fiber taper waveguide near-field optic
K. Srinivasan (2007)
10.1364/OL.33.001759
Scalable fabrication of optical resonators with embedded site-controlled quantum dots.
T. Sünner (2008)
10.1063/1.3393988
Quantum efficiency and oscillator strength of site-controlled InAs quantum dots
F. Albert (2010)
See more
Semantic Scholar Logo Some data provided by SemanticScholar