Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

The Effect Of Atomic Structure On The Electrical Response Of Aluminium Oxide Tunnel Junctions.

M. J. Cyster, J. Smith, J. A. Vaitkus, N. Vogt, S. Russo, J. Cole
Published 2019 · Physics, Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Many nanoelectronic devices rely on thin dielectric barriers through which electrons tunnel. For instance, aluminium oxide barriers are used as Josephson junctions in superconducting electronics. The reproducibility and drift of circuit parameters in these junctions are affected by the uniformity, morphology, and composition of the oxide barriers. To improve these circuits the effect of the atomic structure on the electrical response of aluminium oxide barriers must be understood. We create three-dimensional atomistic models of aluminium oxide tunnel junctions and simulate their electronic transport properties with the non-equilibrium Green's function formalism. Increasing the oxide density is found to produce an exponential increase in the junction resistance. In highly oxygen-deficient junctions we observe metallic channels which decrease the resistance significantly. Computing the charge and current density within the junction shows how variation in the local potential landscape can create channels which dominate conduction. An atomistic approach provides a better understanding of these transport processes and guides the design of junctions for nanoelectronics applications.
This paper references
10.1126/science.1231930
Superconducting Circuits for Quantum Information: An Outlook
M. Devoret (2013)
10.1103/PHYSREVLETT.10.486
Tunneling between superconductors
V. Ambegaokar (1963)
10.1103/PHYSREVB.74.100502
Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier
S. Oh (2006)
10.1063/1.4893473
Characterization of aluminum oxide tunnel barriers by combining transport measurements and transmission electron microscopy imaging
T. Aref (2014)
10.1002/adma.201103189
Anodized aluminum oxide thin films for room-temperature-processed, flexible, low-voltage organic non-volatile memory elements with excellent charge retention.
M. Kaltenbrunner (2011)
10.1088/0022-3727/48/39/395308
Direct observation of the thickness distribution of ultra thin AlOx barriers in Al/AlOx/Al Josephson junctions
L. Zeng (2015)
10.1016/0022-3697(62)90165-8
Volt-current characteristics for tunneling through insulating films
R. Stratton (1962)
10.1103/PhysRevLett.110.077002
Delocalized oxygen as the origin of two-level defects in Josephson junctions.
T. C. DuBois (2013)
10.1038/nmat2830
Electronic transport in polycrystalline graphene.
O. Yazyev (2010)
10.1103/PhysRevB.71.161401
Oxygen stoichiometry and instability in aluminum oxide tunnel barrier layers
E. Tan (2005)
10.1063/1.1702682
Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film
J. Simmons (1963)
Non-equilibrium Green's function treatment of phonon scattering in carbon nanotube transistors
Siyuranga O. Koswatta (2007)
10.1088/1361-6633/ab3a7e
Towards understanding two-level-systems in amorphous solids - insights from quantum circuits.
C. Müller (2019)
10.1109/TED.2007.902900
Nonequilibrium Green's Function Treatment of Phonon Scattering in Carbon-Nanotube Transistors
S. Koswatta (2007)
10.1063/1.3624612
Distributed non-equilibrium Green’s function algorithms for the simulation of nanoelectronic devices with scattering
S. Cauley (2011)
10.1103/PHYSREVB.74.205323
Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations
M. Luisier (2006)
10.1116/1.2817629
Double oxidation scheme for tunnel junction fabrication
T. Holmqvist (2008)
10.1103/PHYSREVLETT.88.046805
Ultrathin aluminum oxide tunnel barriers.
W. Rippard (2002)
10.1098/RSPA.1928.0091
Electron Emission in Intense Electric Fields
R. H. Fowler (1928)
10.1063/1.338348
Experimental investigations and analysis for high-quality Nb/Al-AlOx/Nb Josephson junctions
S. Morohashi (1987)
10.1063/1.3529457
Quantitative evaluation of defect-models in superconducting phase qubits
J. Cole (2010)
10.1103/PHYSREVB.80.125413
Potential barrier modification and interface states formation in metal-oxide-metal tunnel junctions
H. Jung (2009)
10.1103/PhysRevB.87.195107
Tunneling through Al/AlO x /Al junction: Analytical models and first-principles simulations
M. Z. Dievskov'a (2013)
10.1038/543171a
Commercialize quantum technologies in five years
M. Mohseni (2017)
10.1016/S0040-6090(02)00787-3
Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium
L. P. H. Jeurgens (2002)
10.1016/0031-9163(65)90202-7
LOW TEMPERATURE ELECTRONIC SPECIFIC HEAT OF SIMPLE METALS
N. Ashcroft (1965)
10.1063/1.1569986
The use of Simmons’ equation to quantify the insulating barrier parameters in Al/AlOx/Al tunnel junctions
L. S. Dorneles (2003)
10.1080/08927022.2015.1068941
Constructing ab initio models of ultra-thin Al–AlOx–Al barriers
T. Dubois (2015)
10.1002/ANDP.19213690304
Die Berechnung optischer und elektrostatischer Gitterpotentiale
P. Ewald (1921)
10.1103/PHYSREVB.43.4461
Self-consistent band structures, charge distributions, and optical-absorption spectra in MgO, alpha -Al2O3, and MgAl2O4.
Xu (1991)
10.1103/PhysRevB.92.235420
Electronic transport in Si:P δ-doped wires
J. Smith (2015)
10.1063/1.1659141
Tunneling Conductance of Asymmetrical Barriers
W. Brinkman (1970)
10.1103/PhysRevLett.118.057703
Direct Identification of Dilute Surface Spins on Al_{2}O_{3}: Origin of Flux Noise in Quantum Circuits.
S. D. de Graaf (2017)
10.1038/nature23879
Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
Abhinav Kandala (2017)
10.1088/1367-2630/17/2/023017
Atomic delocalization as a microscopic origin of two-level defects in Josephson junctions
T. Dubois (2015)
10.1103/PHYSREVB.75.125417
Effect of growth orientation and surface roughness on electron transport in silicon nanowires
A. Svizhenko (2007)
10.1088/0953-8984/15/10/320
Properties of native ultrathin aluminium oxide tunnel barriers
K. Gloos (2003)
10.1103/PhysRevLett.97.226802
First principles modeling of tunnel magnetoresistance of Fe/MgO/Fe trilayers.
Derek Waldron (2006)
10.1039/A606455H
GULP: A computer program for the symmetry-adapted simulation of solids
J. Gale (1997)
10.1063/1.117946
Single‐atom point contact devices fabricated with an atomic force microscope
E. Snow (1996)
10.1103/PHYSREVB.39.2060
Tunneling in artificial Al2O3 tunnel barriers and Al2O3-metal multilayers.
Barner (1989)
10.1103/PHYSREV.134.A1094
Electron Tunneling Through Thin Aluminum Oxide Films
T. E. Hartman (1964)
10.1016/J.SUSC.2005.01.043
Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals
A. Hasnaoui (2005)
10.1038/nature07128
Superconducting quantum bits
J. Clarke (2008)
10.1103/PHYSREVB.50.11996
Electrostatic potentials for metal-oxide surfaces and interfaces.
F. Streitz (1994)
10.1109/TASC.2014.2378033
Fabrication of Superconducting Qubits With Al Trilayer Josephson Junctions
T. Satoh (2015)
10.1007/S11425-012-4498-4
Hausdorff dimension of Moran sets with increasing spacing
Yu-Mei Xue (2013)
10.1016/J.MEE.2009.03.006
Electronic structure of bulk and defect α- and γ-Al2O3
T. Perevalov (2009)
10.1103/PhysRevApplied.8.044003
Tunable Superconducting Qubits with Flux-Independent Coherence
M. Hutchings (2017)
10.1063/1.1657043
Fowler‐Nordheim Tunneling into Thermally Grown SiO2
M. Lenzlinger (1969)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar