Online citations, reference lists, and bibliographies.
← Back to Search

Remote Fiber-optic Biosensors Based On Evanescent-excited Fluoro-immunoassay: Concept And Progress

J. D. Andrade, R. A. VanWagenen, D.E. Gregonis, K. Newby, J. Lin
Published 1985 · Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
A homogeneous silica optical fiber with its coating and cladding removed will interact with its surroundings via evanescent-wave modes at the interface. Antibody or antigen molecules can be covalently linked to the silica-fiber surface. The immobilized biomolecules will bind complementary antigen or antibody from a surrounding solution. If the bound antigen or antibody is fluorescent, a fluoro-immunoassay can be performed. The sensitivity of such a sensor is enhanced in a competitive immunoassay mode, where a fluorescently labeled antigen or antibody competes for the binding sites on the immobilized bio-molecules, thereby providing a competitive binding fluoro-immunoassay. Such sensors have the potential for remote unattended pseudocontinuous monitoring of biomolecules.
This paper references
10.1351/pac198456101345
Effects of plasma protein adsorption on protein conformation and activity
J. D. Andrade (1984)
10.1016/S0022-0728(83)80209-5
Total internal reflection fluorescence (TIRF) as a quantitative probe of protein adsorption
S. A. Rockhold (1983)
Principles of protein adsorption , ” in Protein A dp . 8 . sorption ,
J. D. Andrade (1985)
Vanwagenen, “Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection,
R. A. J . D. Andrade (1983)
10.1016/0584-8539(78)80020-8
Comparison of inner filter effects in “front face” and total reflection fluorescence
T. Hirschfeld (1978)
Angular distribution of fluorescence from liquids by evanescent excitation
R. E. Benner (1979)
10.1146/ANNUREV.BB.13.060184.001335
Total internal reflection fluorescence.
D. Axelrod (1984)
TIRF spectros - ’ copy applied to protein adsorption , ” in Pl ’ otein Adsorption
R. Vanwagenen V. Hlady
Evancescent streak excitation of adsorbed protein
C. L. de Ligny (1984)
Fluorescent immunoassay by total reflection
W. A. Little (1975)
Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection
R. A. Vanwagenen (1982)
Probing protein adsorption via TIRF , ” in Biomaterials
S. Rockhold R. Vanwagenen (1984)
Fluorescent phycobili protein conjugates
A. R. Potvin (1982)
10.1093/CLINCHEM/27.9.1580
The hybridoma-an immunochemical laser.
G. S. David (1981)
10.1201/9780203302828.ch6
Affinity chromatography.
J. Turková (1974)
Yalow
R. S (1978)
Manipulations with light flashes
E. W. Salzman (1984)
Interfacial chemical sensor using a single , multimode optical fiber
R. Vanwagenen (1984)
Sensor applications of TIRF spectroscopy,
R. A. Vanwagenen (1982)
10.1364/AO.18.000862
Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation.
el-H Lee (1979)
Probing protein adsorption via TIRF,
S. Rockhold (1982)
Polyethylene oxide as a biomaterial
E. Merrill (1983)
Kinetics and Mechanism of fluorescence enhancement
P. D. G. Dean
10.1364/JOSA.58.000380
Electric Fields Produced by the Propagation of Plane Coherent Electromagnetic Radiation in a Stratified Medium
W. Hansen (1968)
Ion - selective membranes
A. R. Potvin (1984)
10.1021/AC00265A002
Chemical Microsensors and Microinstrumentation
H. Wohltjen (1984)



This paper is referenced by
10.1016/J.OPTLASENG.2005.05.003
A theoretical evaluation of fibre-optic evanescent wave absorption in spectroscopy and sensors
Y. Xu (2006)
10.1117/12.24775
Recent progress in intrinsic fiber optic chemical sensing
R. Lieberman (1991)
10.1109/OFS.1992.763090
Fiber Optic Optrodes For Chemical Sensing
M. Brenci (1992)
Next generation biosensor systems for environmental water quality monitoring
Nimet Yildirim (2016)
10.1117/12.57715
Optoelectronic devices : fiber-optic sensors for biomedical and environmental applications
A. G. Mignani (1992)
10.1007/978-3-642-75088-5_64
High Sensitivity Fiber Optic Evanescent Wave Sensing for Fluoroimmunoassay
W. Love (1989)
10.1016/S1061-8945(05)80011-X
Langmuir—Blodgett monolayers as a basis for advanced optical biosensors
A. Savitsky (1995)
Detection of Low Molecular Weight Molecules by using Optical Biosensors
Von der Gemeinsamen (2002)
10.1016/B978-1-85617-161-8.50088-4
EVANESCENT WAVE FIBER OPTIC BIOSENSORS
F. Ligler (1992)
10.1109/IEMBS.1990.691175
Improvement Of Optical Fiber Based Biosensors
C. Komives (1990)
10.1109/EMBC.2016.7591141
Novel refractive index biosensing of microcontact printed molecules on lithium niobate
Nikhil Bhalla (2016)
10.1016/0040-6090(87)90426-3
Langmuir-Blodgett films and black lipid membranes in biospecific surface-selective sensors
W. Reichert (1987)
10.1093/jat/23.6.460
A rapid reusable fiber optic biosensor for detecting cocaine metabolites in urine.
N. Nath (1999)
Fiber Optic ImmunochemicalSensor for Continuous , ReversibleMeasurement of Phenytoin
F. Anderson (2004)
10.1177/073168449601500904
The Use of Evanescent Wave Fluorescence Spectroscopy for Control of the Liquid Molding Process
D. Woerdeman (1996)
10.1006/ABIO.1997.2020
Two-photon excitation by the evanescent wave from total internal reflection.
I. Gryczynski (1997)
10.1109/JSEN.2006.881408
Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis
R. Bernini (2006)
10.1007/BF00703369
Potential interest of optical fibres as immunosensors: study of different antigen coupling methods
P. Claudon (1991)
10.1007/978-1-4612-0483-1_7
Instrumentation for Cylindrical Waveguide Evanescent Fluorosensors
Steve Lackie (1991)
10.1016/0032-3861(92)91079-H
Optically controlled ligand delivery: 3. Photocleavage of 2-nitrobenzyl bonds at solid-liquid interfaces
H. R. Yen (1992)
10.1366/0003702934067919
Probing Biosensor Interfaces by Multifrequency Phase and Modulation Total Internal Reflection Fluorescence (MPM-TIRF)
F. Bright (1993)
SECONDA UNIVERSITÀ DEGLI STUDI DI NAPOLI Facoltà di Ingegneria Dottorato di Ricerca in Ingegneria Elettronica
L. Zeni (2005)
10.1016/S1383-7303(01)80054-5
Chapter 13 – Two-Dimensional Crystallization of Particulates and Proteins
P. Kralchevsky (2001)
10.1117/12.952100
Sensitivity Analysis Of Evanescent Fiber Optic Sensors
Jinyu Wang (1989)
10.1016/0003-2670(92)80070-N
Enhanced performance of fibre-optic immunoprobes using refunctionalized fluoropolymers as the substratum
F. Bright (1992)
10.1117/12.56537
Simple reversible fiber optic chemical sensors using solvatochromic dyes
S. Angel (1992)
10.1117/12.364378
Optical fiber immunosensor for the real-time analysis of ligand-receptor binding kinetics
H. Lu (1999)
10.1109/isdea.2012.527
Optical Fiber Sensors Based on Local Surface Plasmon Resonance Modified with Silver Nanoparticles
Liu Sheng-ping (2012)
10.1117/12.590517
Polymer-on-glass waveguide structure for efficient fluorescence-based optical biosensors
R. Bernini (2005)
10.1117/12.952098
Fiber Optic Immunochemical Sensors For Continuous Monitoring Of Hapten Concentrations
W. Miller (1989)
SEMICONDUCTOR AND INTEGRATED OPTOELECTRONICS ( SIOE ) Optimisation of distributed feedback laser biosensors
J. Coote (2007)
10.1385/ABAB:87:1:25
A sensitive solid-phase fluoroimmunoassay for detection of opiates in urine
M. Eldefrawi (2000)
See more
Semantic Scholar Logo Some data provided by SemanticScholar