Online citations, reference lists, and bibliographies.
← Back to Search

Temperature Dependence Of Magnetotransport In Extraordinary Magnetoresistance Devices

T. Boone, L. Folks, J. Katine, S. Maat, E. Marinero, S. Nicoletti, M. Field, G. Sullivan, A. Ikhlassi, B. Brar, B. Gurney
Published 2006 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Extraordinary magnetoresistance (EMR) devices have been fabricated and characterized at various magnetic fields, operating temperatures, and current excitations. These devices are comprised of nonmagnetic high mobility semiconductors and low resistance metallic contacts and shunts. The resistance of the device is modulated by magnetic fields due to the Lorentz force steering an electron current between the high resistance semiconductor and the low resistance metallic shunt. The EMR devices were tested between 300 K and 5 K in magnetic fields up to 2 T perpendicular to the 2DEG plane and excitation currents up to 100 muA. Magnetoresistance increases as temperature decreases, potentially indicating that EMR persists even as dimensions approach the electron mean free path
This paper references



This paper is referenced by
10.3390/s19132966
Two-Dimensional Graphene Family Material: Assembly, Biocompatibility and Sensors Applications
X. Zhang (2019)
10.1007/978-3-319-69378-1_9
CNT Applications in Sensors and Actuators
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_32
Structural Aspects and Morphology of CPs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_3
Synthesis, Purification, and Chemical Modification of CNTs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_20
Graphene Applications in Sensors
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_37
Batteries and Energy Devices
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_21
Graphene Applications in Batteries and Energy Devices
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_10
CNT Applications in Drug and Biomolecule Delivery
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_24
Medical and Pharmaceutical Applications of Graphene
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_11
CNT Applications in Microelectronics, “Nanoelectronics,” and “Nanobioelectronics”
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_4
Physical, Mechanical, and Thermal Properties of CNTs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_25
Graphene Applications in Specialized Materials
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_42
Electrochemomechanical, Chemomechanical, and Related Devices
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_22
Graphene Applications in Electronics, Electrical Conductors, and Related Uses
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_8
CNT Applications in Batteries and Energy Devices
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_14
CNT Applications in the Environment and in Materials Used in Separation Science
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_15
Miscellaneous CNT Applications
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_27
Introducing Conducting Polymers (CPs)
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_31
Syntheses and Processing of CPs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_39
Displays, Including Light-Emitting Diodes (LEDs) and Conductive Films
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_13
CNT Applications in Electrical Conductors, “Quantum Nanowires,” and Potential Superconductors
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_5
Toxicology of CNTs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_26
Miscellaneous Applications of Graphene
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_12
Graphene Applications in Displays and Transparent, Conductive Films/Substrates
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_30
Basic Electrochemistry of CPs
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_19
Brief, General Overview of Applications
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_7
CNT Applications in Specialized Materials
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_17
Electronic Structure and Conduction Models of Graphene
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_18
Synthesis and Chemical Modification of Graphene
P. Chandrasekhar (2018)
10.1007/978-3-319-69378-1_28
Conduction Models and Electronic Structure of CNTs
P. Chandrasekhar (2018)
The Graphene electronics device
T. Radadiya (2015)
10.1039/c4nr01600a
Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems.
A. Ferrari (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar