Online citations, reference lists, and bibliographies.
← Back to Search

A Top-down Look At Bottom-up Electronics

M. Lundstrom
Published 2003 · Computer Science

Cite This
Download PDF
Analyze on Scholarcy
Share
Examines CMOS technology at the scaling limit and the role that new, molecular devices may play in future electronics systems. Advanced simulation techniques that capture quantum effects and atomistic structure allow realistic projections of ultimate CMOS. The same techniques allow us to explore unconventional devices such as carbon nanotube FETs, two-terminal molecular devices, and spintronic devices. The role of such devices in future heterogeneous systems will be considered. The talk will conclude with some general thoughts on the important role of the VLSI design community for electronics beyond the gigascale.
This paper references
10.1038/nature00791
Coulomb blockade and the Kondo effect in single-atom transistors
J. Park (2002)
10.1126/SCIENCE.1065824
Logic Circuits with Carbon Nanotube Transistors
A. Bachtold (2001)
10.1038/29954
Room-temperature transistor based on a single carbon nanotube
S. Tans (1998)
10.1109/16.918235
Sub-50 nm P-channel FinFET
X. Huang (2001)
High k dielectrics for advanced carbon nanotube transistors and logic
I. Park (2002)
10.1109/IEDM.2001.979435
Examination of design and manufacturing issues in a 10 nm double gate MOSFET using nonequilibrium Green's function simulation
Z. Ren (2001)
10.1109/5.915374
Device scaling limits of Si MOSFETs and their application dependencies
D. Frank (2001)
FinFET scaling to lOm gate length
B. Yu
10.1201/9781420040623.ch12
Resistance of a molecule
M. Paulsson (2003)
10.1557/MRS2001.104
Molecular Random-Access Memory Cell Demonstrated
C. Muntele (2001)
10.1109/55.596937
Elementary scattering theory of the Si MOSFET
Mark S. Lundstrom (1997)
10.1109/IEDM.2002.1175831
Fully depleted surrounding gate transistor (SGT) for 70 nm DRAM and beyond
B. Goebel (2002)
10.1109/IEDM.2002.1175829
Extreme scaling with ultra-thin Si channel MOSFETs
B. Doris (2002)
10.1038/NMAT769
High-κ dielectrics for advanced carbon-nanotube transistors and logic gates
A. Javey (2002)
10.1109/IEDM.1998.746390
Transistors and tunnel diodes for analog/mixed-signal circuits and embedded memory
A. Seabaugh (1998)
10.1103/PHYSREVB.47.16631
Thermoelectric figure of merit of a one-dimensional conductor.
Hicks (1993)
10.1109/TNANO.2002.807390
Carbon nanotube electronics
J. Appenzeller (2002)
10.1016/B978-012507060-7/50009-X
Sub-20-nm Electron Devices
K. Likharev (2003)
10.1109/IEDM.2002.1175825
FinFET scaling to 10 nm gate length
Bin Yu (2002)
10.1109/IEDM.2000.904248
Prospects for quantum computing
D. DiVincenzo (2000)
A 90nm CMOS device technology featuring 50 MI strained silicon channel transistors , 7 layers of CU interconnects , low k ILD , and 1 mm 2 6T SRAM cell
S. Thompson (2002)
10.1063/1.2807624
Electronic transport in mesoscopic systems
S. Datta (1995)
10.1006/SPMI.2000.0920
Nanoscale device modeling: the Green’s function method
S. Datta (2000)
10.1109/IEDM.2000.904418
The ballistic nanotransistor: a simulation study
Z. Ren (2000)
10.1109/TNANO.2002.806825
Current-voltage characteristics of molecular conductors: two versus three terminal
P. Damle (2002)
10.1063/1.102730
Electronic analog of the electro‐optic modulator
S. Datta (1990)



This paper is referenced by
10.1109/MWSCAS.2013.6674655
Near-threshold CNTFET SRAM cell design with gated cell power supply
Z. Zhang (2013)
10.1109/TED.2005.845148
Quantum modeling and proposed designs of CNT-embedded nanoscale MOSFETs
A. Akturk (2005)
10.1109/MWSCAS.2012.6291988
CNTFET SRAM cell with tolerance to removed metallic CNTs
Z. Zhang (2012)
10.1109/ECS.2014.6892748
High SNM 32nm CNFET based 6T SRAM Cell design considering transistor ratio
Pudi Dhilleswararao (2014)
10.1109/ISCAS.2013.6572293
CNTFET 8T SRAM cell performance with near-threshold power supply scaling
Zhe Zhang (2013)
10.1117/12.776599
Optical, analog and digital domain architectural considerations for visual communications
W. A. Metz (2008)
10.1002/cta.2696
Design and analysis of CNTFET based 10T SRAM for high performance at nanoscale
M. Kumar (2019)
10.1109/NANO.2011.6144323
Low power and metallic CNT tolerant CNTFET SRAM design
Z. Zhang (2011)
10.1109/TNANO.2012.2197636
Carbon Nanotube SRAM Design With Metallic CNT or Removed Metallic CNT Tolerant Approaches
Z. Zhang (2012)
10.1109/GREENCOMP.2010.5598266
Low power SRAM cell design for FinFET and CNTFET technologies
J. Delgado-Frias (2010)
10.1109/MWSCAS.2011.6026573
CNTFET gate design with tolerance to metallic CNTs
Florian Grigoleit (2011)
10.1088/1757-899X/53/1/012049
Design and Development of a Simulator for Modelling Carbon Nanotube
S. Farhana (2013)
10.1109/ICDCSYST.2012.6188756
Design of a 32nm 7T SRAM Cell based on CNTFET for low power operation
S. Prasad (2012)
10.1109/TNANO.2013.2295757
Near-Threshold CNTFET SRAM Cell Design With Word-Line Boosting and Removed Metallic CNT Tolerance
Z. Zhang (2014)
10.1109/MWSCAS.2009.5236035
Performance of CNFET SRAM cells under diameter variation corners
Z. Zhang (2009)
10.1109/MWSCAS.2010.5548846
CNTFET SRAM cell design with tolerance to metallic CNTs
Z. Zhang (2010)
Semantic Scholar Logo Some data provided by SemanticScholar