Online citations, reference lists, and bibliographies.
← Back to Search

The D3 F-box Protein Is A Key Component In Host Strigolactone Responses Essential For Arbuscular Mycorrhizal Symbiosis.

S. Yoshida, H. Kameoka, M. Tempo, K. Akiyama, Mikihisa Umehara, Shinjiro Yamaguchi, H. Hayashi, J. Kyozuka, K. Shirasu
Published 2012 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Arbuscular mycorrhiza (AM) represents an ancient endosymbiosis between plant roots and Glomeromycota fungi. Strigolactones (SLs), plant-derived terpenoid lactones, activate hyphal branching of AM fungi before physical contact. Lack of SL biosynthesis results in lower colonization of AM fungi. The F-box protein, DWARF3 (D3), and the hydrolase family protein DWARF14 (D14) are crucial for SL responses in rice. Here we conducted AM fungal colonization assays with the SL-insensitive d3 and d14 mutants. The d3 mutant exhibited strong defects in AM fungal colonization, whereas the d14 mutant showed higher AM fungal colonization. As D14 has a homologous protein, D14-LIKE, we generated D14-LIKE knockdown lines by RNA interference in the wildtype and d14 background. D14 and D14-LIKE double knockdown lines exhibited similar colonization rates as those of the d14-1 mutant. D3 is crucial for establishing AM symbiosis in rice, whereas D14 and D14-LIKE are not. Our results suggest distinct roles for these SL-related components in AM symbiosis.
This paper references
10.1126/science.154.3753.1189
Germination of Witchweed (Striga lutea Lour.): Isolation and Properties of a Potent Stimulant
C. Cook (1966)
10.1111/J.1469-8137.1980.TB04556.X
AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS
M. Giovannetti (1980)
10.1111/J.1469-8137.1990.TB00476.X
A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi.
T. Mcgonigle (1990)
10.1046/J.1365-313X.2002.01419.X
Micrografting techniques for testing long-distance signalling in Arabidopsis.
C. Turnbull (2002)
MAX1 and MAX2 control shoot lateral branching in Arabidopsis.
P. Stirnberg (2002)
10.1093/PCP/PCH048
Simple RNAi vectors for stable and transient suppression of gene function in rice.
Daisuke Miki (2004)
10.1126/SCIENCE.1099944
A Compound from Smoke That Promotes Seed Germination
G. Flematti (2004)
10.1038/nature03608
Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
K. Akiyama (2005)
10.1093/PCP/PCI022
Suppression of tiller bud activity in tillering dwarf mutants of rice.
S. Ishikawa (2005)
10.1146/ANNUREV.MICRO.58.030603.123749
Signaling in the arbuscular mycorrhizal symbiosis.
M. Harrison (2005)
10.1111/J.1469-8137.2004.01236.X
Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups.
I. E. de la Providencia (2005)
10.1105/tpc.105.035410
Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection[W]
A. Genre (2005)
10.1038/nrm1547
Function and regulation of cullin–RING ubiquitin ligases
M. D. Petroski (2005)
10.1104/pp.105.063933
RNA Silencing of Single and Multiple Members in a Gene Family of Rice1[w]
Daisuke Miki (2005)
10.1371/journal.pbio.0040226
Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria
A. Besserer (2006)
10.1007/s11103-006-9118-7
A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes
A. Miyao (2006)
10.1266/GGS.82.361
Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death.
Haifang Yan (2007)
10.1111/J.1365-313X.2007.03175.X
A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi.
Sekhara Reddy D M R (2007)
10.1104/pp.107.107227
The F-Box Protein MAX2 Functions as a Positive Regulator of Photomorphogenesis in Arabidopsis1[C][W][OA]
H. Shen (2007)
10.1016/J.PHYTOCHEM.2006.09.036
Plant signals and fungal perception during arbuscular mycorrhiza establishment.
N. Requena (2007)
10.1111/J.1365-313X.2007.03210.X
DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice.
Tomotsugu Arite (2007)
10.1111/J.1365-313X.2007.03032.X
MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching.
P. Stirnberg (2007)
10.1073/pnas.0608136104
A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis
Hélène Javot (2007)
10.1073/pnas.0803499105
Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes
Sonja Kosuta (2008)
10.1038/nature07271
Strigolactone inhibition of shoot branching
V. Gómez-Roldán (2008)
10.1038/nature07272
Inhibition of shoot branching by new terpenoid plant hormones
Mikihisa Umehara (2008)
10.1105/tpc.108.062414
Arbuscular Mycorrhiza–Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway[W]
C. Gutjahr (2008)
10.1104/pp.108.121400
GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus Gigaspora rosea by Boosting Its Energy Metabolism[C][W]
A. Besserer (2008)
10.1104/pp.108.131516
Karrikins Discovered in Smoke Trigger Arabidopsis Seed Germination by a Mechanism Requiring Gibberellic Acid Synthesis and Light1[W][OA]
D. C. Nelson (2008)
10.1093/pcp/pcn153
Divergence of evolutionary ways among common sym genes: CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway.
M. Banba (2008)
10.1038/nrmicro1987
Arbuscular mycorrhiza: the mother of plant root endosymbioses
M. Parniske (2008)
10.1105/tpc.108.059014
Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both Medicago truncatula and Daucus carota[W]
A. Genre (2008)
10.1016/j.tplants.2009.01.003
Thinking outside the F-box: novel ligands for novel receptors.
D. Somers (2009)
10.1126/science.1171644
Reprogramming Plant Cells for Endosymbiosis
G. Oldroyd (2009)
10.1105/tpc.109.065987
DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth[W][OA]
H. Lin (2009)
10.1093/pcp/pcp091
d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers.
Tomotsugu Arite (2009)
10.1111/j.1365-313X.2009.03824.x
Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus.
N. Takeda (2009)
10.1111/j.1469-8137.2009.02871.x
Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots.
C. Gutjahr (2009)
10.1111/j.1365-313X.2009.04056.x
SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato.
Jonathan T Vogel (2010)
10.1111/j.1365-313X.2009.04072.x
Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis.
N. Pumplin (2010)
10.1146/annurev-phyto-073009-114453
The strigolactone story.
Xiaonan Xie (2010)
10.1093/pcp/pcq075
Strigolactones Negatively Regulate Mesocotyl Elongation in Rice during Germination and Growth in Darkness
Z. Hu (2010)
10.1105/tpc.110.074955
Two Medicago truncatula Half-ABC Transporters Are Essential for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis[W]
Q. Zhang (2010)
10.1111/j.1365-313X.2010.04341.x
The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN.
N. Feddermann (2010)
10.1093/pcp/pcq013
Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice.
Y. Kobae (2010)
10.1016/j.pbi.2009.10.003
New genes in the strigolactone-related shoot branching pathway.
C. Beveridge (2010)
10.1093/jxb/erq041
A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions
H. Koltai (2010)
10.1038/nchembio.435
A small-molecule screen identifies new functions for the plant hormone strigolactone.
Y. Tsuchiya (2010)
10.1105/tpc.111.089771
Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2[W][OA]
Wei Liu (2011)
10.1073/pnas.1100987108
F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana
D. C. Nelson (2011)
10.1111/J.1469-8137.2011.03678.X
Strigolactones are regulators of root development.
H. Koltai (2011)
10.1038/nature09622
Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza
F. Maillet (2011)
10.1111/j.1365-313X.2011.04842.x
The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice.
C. Gutjahr (2012)
10.1242/dev.074567
Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis
M. Waters (2012)
10.1038/nature10873
A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching
T. Kretzschmar (2012)
10.1126/science.1218094
The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone
A. Alder (2012)
10.1093/mp/sss029
MAX2 affects multiple hormones to promote photomorphogenesis.
Hui Shen (2012)
10.1146/annurev-arplant-042811-105545
Regulation of seed germination and seedling growth by chemical signals from burning vegetation.
D. C. Nelson (2012)



This paper is referenced by
10.1007/978-1-0716-1429-7_14
Application of Strigolactones to Plant Roots to Influence Formation of Symbioses.
E. Foo (2021)
10.1016/j.pbi.2021.102071
Conditioning plants for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling
R. Hull (2021)
10.3390/microorganisms9040774
Regulation of Plant Mineral Nutrition by Signal Molecules
V. Kalia (2021)
10.1007/978-1-0716-1429-7_13
Controlled Assays for Phenotyping the Effects of Strigolactone-Like Molecules on Arbuscular Mycorrhiza Development.
Salar Torabi (2021)
10.1080/00103624.2021.1892728
Impacts of Arbuscular Mycorrhizal Fungi on Rice Growth, Development, and Stress Management With a Particular Emphasis on Strigolactone Effects on Root Development
Debasis Mitra (2021)
10.1007/978-3-030-36248-5_5
Symbiotic Signaling: Insights from Arbuscular Mycorrhizal Symbiosis
R. Dhanker (2020)
10.1007/978-3-030-49924-2_7
7 Genetics and Genomics Decipher Partner Biology in Arbuscular Mycorrhizas
L. Lanfranco (2020)
10.1093/jxb/eraa538
Novel Insights into Host Receptors and Receptor-mediated Signaling that Regulate Arbuscular Mycorrhizal Symbiosis.
Fahad Nasir (2020)
10.3389/fpls.2020.00438
Do Phosphate and Cytokinin Interact to Regulate Strigolactone Biosynthesis or Act Independently?
K. Yoneyama (2020)
10.1039/d0cc01989e
Development of potent inhibitors for strigolactone receptor DWARF 14.
M. Yoshimura (2020)
10.1093/treephys/tpaa109
Overexpression of MdIAA24 improves apple drought resistance by positively regulating strigolactone biosynthesis and mycorrhization.
Dong Huang (2020)
10.1007/s00572-020-00965-9
Initiation of arbuscular mycorrhizal symbiosis involves a novel pathway independent from hyphal branching
Quentin Taulera (2020)
10.1038/s41467-020-16021-1
The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice
Jeongmin Choi (2020)
10.1105/tpc.20.00123
Karrikin Signaling Acts Parallel to and Additively with Strigolactone Signaling to Regulate Rice Mesocotyl Elongation in Darkness[OPEN]
Jianshu Zheng (2020)
10.1111/nph.16938
DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis.
Tania Ho-Plágaro (2020)
10.1002/9781119409144.ch61
Role of phytohormones in arbuscular mycorrhiza development
D. Das (2019)
10.1111/nph.15489
Arbuscular mycorrhizal phenotyping: the dos and don'ts
Héctor Montero (2019)
10.1104/pp.19.00034
The Amino Acid Permease 5 (OsAAP5) Regulates Tiller Number and Grain Yield in Rice1
J. Wang (2019)
10.1101/cshperspect.a034645
The Role of Dwarfing Traits in Historical and Modern Agriculture with a Focus on Rice.
Ángel Ferrero-Serrano (2019)
10.5772/INTECHOPEN.86996
The Infection Unit: An Overlooked Conceptual Unit for Arbuscular Mycorrhizal Function
Yoshihiro Kobae (2019)
10.1007/978-3-030-12153-2
Strigolactones - Biology and Applications
H. Koltai (2019)
10.1093/aob/mcz100
Strigolactones and their crosstalk with other phytohormones.
L. O. Omoarelojie (2019)
10.1101/cshperspect.a034686
How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants?
K. Yoneyama (2019)
10.1002/9781119409144.ch93
Plant hormones play common and divergent roles in nodulation and arbuscular mycorrhizal symbioses
E. Foo (2019)
10.1016/J.RHISPH.2018.10.002
The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria
L. Carvalhais (2019)
10.1007/978-3-030-12153-2_4
The role of strigolactones in plant-microbe interactions
S. Rochange (2019)
10.1016/j.isci.2019.06.024
Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway
Guowei Liu (2019)
10.1016/J.PMPP.2017.11.007
AMF: The future prospect for sustainable agriculture
Supratim Basu (2018)
10.1111/nph.14813
Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner.
Shuo Lv (2018)
10.1111/pce.13364
Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research.
M. Mostofa (2018)
10.3390/ijms19103146
Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis
Dehua Liao (2018)
10.1111/nph.15230
Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis.
L. Lanfranco (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar