Online citations, reference lists, and bibliographies.
← Back to Search

Encapsulation Of Molecular Hydrogen In Fullerene C60 By Organic Synthesis

K. Komatsu, Michihisa Murata, Y. Murata
Published 2005 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
In spite of their importance in fundamental and applied studies, the preparation of endohedral fullerenes has relied on difficult-to-control physical methods. We report a four-step organic reaction that completely closes a 13-membered ring orifice of an open-cage fullerene. This process can be used to synthesize a fullerene C60 encapsulating molecular hydrogen, which can be isolated as a pure product. This molecular surgical method should make possible the preparation of a series of C60 fullerenes, encapsulating either small atoms or molecules, that are not accessible by conventional physical methods.
This paper references
10.1126/science.271.5256.1693
Noble Gas Atoms Inside Fullerenes
M. Saunders (1996)
10.1002/(SICI)1521-3773(19990816)38:16<2360::AID-ANIE2360>3.0.CO;2-V
Formation of an Effective Opening within the Fullerene Core of C(60) by an Unusual Reaction Sequence.
Schick (1999)
10.1021/JA034944A
Conductivity and field effect transistor of La2@C80 metallofullerene.
S. Kobayashi (2003)
10.1021/JO034851B
Using cyanide to put noble gases inside C60.
R. J. Cross (2003)
10.1038/367256A0
Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70
M. Saunders (1994)
10.1021/JO981319T
Mechanochemical Synthesis and Characterization of the Fullerene Dimer C120
K. Komatsu (1998)
10.1021/JA9831498
Isolation and Spectral Properties of Kr@C60, a Stable van der Waals Molecule
K. Yamamoto (1999)
10.1126/SCIENCE.1068427
A Rational Chemical Synthesis of C60
L. Scott (2002)
10.1038/366123A0
Atoms in carbon cages: the structure and properties of endohedral fullerenes
D. Bethune (1993)
10.1038/42439
Synthesis and X-ray structure of dumb-bell-shaped C120
Guan-Wu Wang (1997)
10.1007/3-540-68117-5_2
Ring Opening Reactions of Fullerenes: Designed Approaches to Endohedral Metal Complexes
Y. Rubin (1999)
10.1002/1521-3773(20010417)40:8<1543::AID-ANIE1543>3.0.CO;2-6
Insertion of Helium and Molecular Hydrogen Through the Orifice of an Open Fullerene.
Y. Rubin (2001)
10.1021/JA012676F
129Xe NMR spectrum of xenon inside C(60).
M. Syamala (2002)
10.1021/CR00097A007
Carbonyl-coupling reactions using low-valent titanium
J. Mcmurry (1989)
10.1021/JA027555+
Lanthanoid endohedral metallofullerenols for MRI contrast agents.
H. Kato (2003)
10.1021/JA0354162
100% encapsulation of a hydrogen molecule into an open-cage fullerene derivative and gas-phase generation of H2@C60.
Y. Murata (2003)
10.1246/BCSJ.69.2131
Endohedral Metallofullerenes : New Spherical Cage Molecules with Interesting Properties
S. Nagase (1996)
10.1016/S0022-328X(99)00756-1
Recent progress in the studies of endohedral metallofullerenes
Shuying Liu (2000)
10.1021/JA00084A089
Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure
M. Saunders (1994)



This paper is referenced by
10.1038/nmat2885
The era of carbon allotropes.
A. Hirsch (2010)
10.1063/1.2174012
Cryogenic NMR spectroscopy of endohedral hydrogen-fullerene complexes.
M. Carravetta (2006)
10.1007/7081_2007_107
Heterocyclic Supramolecular Chemistry of Fullerenes and Carbon Nanotubes
N. Komatsu (2008)
Focus: Molecule in a Cage
Michael Schirber (2009)
10.1021/jo201143k
Preparation of a 12-membered open-cage fullerendione through silane/borane-promoted formation of ketal moieties and oxidation of a vicinal fullerendiol.
Gang Zhang (2011)
10.1063/1.4732145
Special structures and properties of hydrogen nanowire confined in a single walled carbon nanotube at extreme high pressure
Yueyuan Y. Xia (2012)
dependencescattering spectrum and its temperature : theoretical prediction of the inelastic 60 HD in C
Minzhong Xu (2013)
10.1002/QUA.24456
Gas storage of simple molecules in boron oxide nanocapsules
Mehdi Zamani (2013)
10.1039/c7cp06062a
Explaining the symmetry breaking observed in the endofullerenes H2@C60, HF@C60, and H2O@C60.
Peter M Felker (2017)
10.1080/1536383X.2015.1072515
Calculations of the water-dimer encapsulations into C84
Z. Slanina (2016)
10.1016/j.carbon.2018.07.073
The threshold displacement energy of buckminsterfullerene C60 and formation of the endohedral defect fullerene He@C59
M. Stockett (2018)
10.1002/EJOC.200700165
Progress in Supramolecular Chemistry of Gases
D. Rudkevich (2007)
10.1016/J.PHYSE.2009.04.006
Ab initio investigation of the possibility of formation of endohedral complexes between H2 molecules and B-, N- and Si-doped C60 fullerenes
M. Darvish Ganji (2009)
10.1039/c0cs00225a
Endohedral metallofullerenes: a unique host-guest association.
A. Rodríguez-Fortea (2011)
10.1039/c3cp51443a
Structures and nonlinear optical properties of the endohedral metallofullerene-superhalogen compounds Li@C60-BX4 (X = F, Cl, Br).
Shu-jian Wang (2013)
AMINO ACID FUNCTIONALIZED NANODIAMONDS AS GENE DELIVERY VECTORS: SYNTHESIS, PHYSICOCHEMICAL CHARACTERIZATION AND CELLULAR INTERACTION STUDIES
Saniya Alwani (2015)
10.3929/ethz-b-000165377
Hollow Carbon Nanobubbles: Synthesis, Properties and Applications
Corinne J. Hofer (2017)
10.1080/15363830802064187
On the Synthesis Conditions of N and N2 Endohedral Fullerenes
S. Ito (2008)
10.1021/ja209461g
A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis.
L. Scott (2012)
10.1021/ja809831a
Putting atoms and molecules into chemically opened fullerenes.
Christopher M. Stanisky (2009)
Ciclodeshidrogenación catalizada por superficies: fullerenos a partir de precursores aromáticos
G. Otero (2010)
10.1002/ANGE.201809699
Buckyball Difluoride F2- @C60+ -A Single-Molecule Crystal.
C. Foroutan-Nejad (2018)
10.1039/B609231D
Cutting of multi-walled carbon nanotubes by solid-state reaction
X. Wang (2006)
10.2174/1874609809666160921120008
Fullerenes as Anti-Aging Antioxidants.
Y. P. Galvan (2017)
10.1002/chem.201500692
Tunable Porosities and Shapes of Fullerene-Like Spheres
Fabian Dielmann (2015)
10.1016/J.CPLETT.2008.09.023
Theoretical investigation of equilibrium and transition state structures, binding energies and barrier heights of water-encapsulated open-cage [59]fullerenone complexes
Tobias Pankewitz (2008)
10.1080/00268970903140441
Exact solutions for a Hamiltonian with the Morse potential and the Dirac delta shell interactions
H. Erkol (2009)
10.1080/1536383X.2013.863768
NMR Studies of the Dynamic Motion of Encapsulated Ions and Clusters in Fullerene Cages: A Wheel Within a Wheel
Jianyuan Zhang (2014)
10.1016/J.CPLETT.2014.06.013
An anomalous dipole–dipole arrangement of water molecules encapsulated into C60 dimer
Kazuya Nomura (2014)
10.7567/JJAP.55.04EP02
Energetics of H2O encapsulated in fullerenes under an electric field
Jun-ya Sorimachi (2016)
10.1002/EST2.35
Hydrogen storage in carbon materials—A review
M. Mohan (2019)
10.2320/JINSTMET.71.218
放射線照射下における C60 の欠陥導入過程
直史 坂口 (2007)
See more
Semantic Scholar Logo Some data provided by SemanticScholar