Online citations, reference lists, and bibliographies.
← Back to Search

Imaging Crystals, Polymers, And Processes In Water With The Atomic Force Microscope.

B. Drake, C. B. Prater, A. L. Weisenhorn, S. Gould, T. Albrecht, C. Quate, D. Cannell, H. Hansma, P. Hansma
Published 1989 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
The atomic force microscope (AFM) can be used to image the surface of both conductors and nonconductors even if they are covered with water or aqueous solutions. An AFM was used that combines microfabricated cantilevers with a previously described optical lever system to monitor deflection. Images of mica demonstrate that atomic resolution is possible on rigid materials, thus opening the possibility of atomic-scale corrosion experiments on nonconductors. Images of polyalanine, an amino acid polymer, show the potential of the AFM for revealing the structure of molecules important in biology and medicine. Finally, a series of ten images of the polymerization of fibrin, the basic component of blood clots, illustrate the potential of the AFM for revealing subtle details of biological processes as they occur in real time.
This paper references
10.1209/0295-5075/3/12/006
Atomic Resolution with Atomic Force Microscope
G. Binnig (1987)
10.1016/0021-9797(88)90169-5
Scanning tunneling microscopic images of adsorbed serum albumin on highly oriented pyrolytic graphite
L. Feng (1988)
10.1116/1.575191
Atomic force microscopy and scanning tunneling microscopy with a combination atomic force microscope/scanning tunneling microscope
O. Marti (1988)
10.1063/1.1139789
Control electronics for atomic force microscopy
O. Marti (1988)
10.1038/331301A0
Atomic-scale engineering
J. Pethica (1988)
10.1016/0304-3991(88)90225-2
Miniature-size scanning tunneling microscope with integrated 2-axes heterodyne interferometer and light microscope
A. Stemmer (1988)
10.1063/1.339435
Atomic resolution imaging of a nonconductor by atomic force microscopy
T. Albrecht (1987)
10.1063/1.98374
Atomic force microscopy of liquid‐covered surfaces: Atomic resolution images
O. Marti (1987)
10.1063/1.97800
Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution
Y. Martin (1987)
10.1063/1.1139788
Low-temperature atomic force microscopy
M. Kirk (1988)
10.1063/1.342563
An atomic-resolution atomic-force microscope implemented using an optical lever
S. Alexander (1989)
10.1116/1.575416
Scanning tunneling microscopy of Langmuir–Blodgett films on graphite
C. A. Lang (1988)
10.1116/1.575380
Scanning tunneling microscopy imaging of biological structures
D. Dahn (1988)
10.1126/SCIENCE.3336773
Atomic force microscopy of an organic monolayer.
O. Marti (1988)
10.1038/332332A0
Molecular resolution images of amino acid crystals with the atomic force microscope
S. Gould (1988)
10.1063/1.100061
Novel optical approach to atomic force microscopy
G. Meyer (1988)
10.1016/0304-3991(88)90218-5
A scanning tunneling microscope (STM) for biological applications: design and performance.
R. Guckenberger (1988)
10.1116/1.575379
Imaging deoxyribose nucleic acid molecules on a metal surface under water by scanning tunneling microscopy
S. Lindsay (1988)
10.1016/0039-6028(87)90181-6
Scanning tunneling microscopy on biological matter
G. Travaglini (1987)
10.1007/978-94-011-1812-5_29
Scanning tunneling microscopy of recA-DNA complexes coated with a conducting film.
M. Amrein (1988)
10.1038/333542A0
Imaging of liquid crystals using a tunnelling microscope
J. Foster (1988)
10.1063/1.341881
Imaging and modification of polymers by scanning tunneling and atomic force microscopy
T. Albrecht (1988)
10.1016/0039-6028(87)90183-X
Scanning tunneling and scanning transmission electron microscopy of biological membranes
A. Stemmer (1987)
10.1126/SCIENCE.3051380
Scanning tunneling microscopy and atomic force microscopy: application to biology and technology.
P. Hansma (1988)
10.1073/PNAS.84.4.969
Images of a lipid bilayer at molecular resolution by scanning tunneling microscopy.
D. Smith (1987)
10.1002/BIP.360271013
Images of DNA fragments in an aqueous environment by scanning tunneling microscopy.
B. Barris (1988)
10.1146/ANNUREV.BI.53.070184.001211
Fibrinogen and fibrin.
R. Doolittle (1984)
10.1038/315253A0
Determination of surface topography of biological specimens at high resolution by scanning tunnelling microscopy
A. Baró (1985)
10.1007/978-94-011-1812-5_35
Atomic-scale friction of a tungsten tip on a graphite surface.
Maté (1987)
10.1116/1.575441
Atomic resolution with the atomic force microscope on conductors and nonconductors
T. Albrecht (1988)
10.1038/331324A0
Molecular manipulation using a tunnelling microscope
J. Foster (1988)



This paper is referenced by
10.1063/1.102008
Determination of tilted superlattice structure by atomic force microscopy
S. Chalmers (1989)
10.1007/978-1-4615-2145-7_3
Scanning Probe Microscopy of Food-Related Systems
M. Miles (1995)
10.1201/9781420050493.CH9
Surface Forces and Microrheology of Molecularly Thin Liquid Films
A. Berman (1998)
10.1073/PNAS.0403538101
Single-molecule recognition imaging microscopy.
C. Stroh (2004)
10.1063/1.1999856
True atomic resolution in liquid by frequency-modulation atomic force microscopy
Takeshi Fukuma (2005)
10.1080/19768354.2015.1037347
Fractal analysis of cell boundary ultrastructure imaged by atomic force microscopy
Y. Kim (2015)
10.1109/ICSENS.2012.6411507
Integrated long-range thermal bimorph actuators for parallelizable Bio-AFM applications
J. Henriksson (2012)
Effect of Hydrogen Peroxide on Surface Morphology and Elasticity of Nucleoli in Cancer Cells
T. Alvin (2003)
10.1007/978-1-4614-7513-2_24
Imaging Living Cells and Mapping Their Surface Molecules with the Atomic Force Microscope
M. Gad (2001)
10.1007/BF02900667
Investigation of structural change of purple membrane in storage by transmission electron microscope and atomic force microscope
Li Xiao-dong (2001)
10.1016/S0079-6107(02)00009-3
Observing structure, function and assembly of single proteins by AFM.
D. Müller (2002)
Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layers
Jean-Michel Friedt (2003)
10.1081/e-escs3-120000887
Langmuir and Langmuir–Blodgett Films of Proteins and Enzymes
R. Leblanc (2015)
10.1007/s00709-018-1251-z
Fibrous matrix component of cell wall in the giant-celled green alga Valonia utricularis observed by atomic force microscopy in liquid
Ichiro Mine (2018)
10.1063/1.4932188
High bandwidth deflection readout for atomic force microscopes.
J. Steininger (2015)
Etude des phénomènes de reconnaissance moléculaire spécifique aux interfaces biologiques par AFM : investigation de l'influence de la multivalence sur les interactions sucre-lectine
Amira Mastouri (2013)
10.3389/fonc.2016.00130
Short DNA Fragments Are a Hallmark of Heavy Charged-Particle Irradiation and May Underlie Their Greater Therapeutic Efficacy
D. Pang (2016)
10.1016/B978-0-08-095975-7.00703-8
Formation and Diagenesis of Carbonate Sediments
R. Arvidson (2014)
10.1016/J.PRECISIONENG.2013.04.001
Effects of geometrical dimensions and liquid properties on frequency response of resonating microcantilevers in the vicinity of a surface
M. Korayem (2013)
10.1016/j.febslet.2014.04.033
Ultrastable atomic force microscopy: Improved force and positional stability
A. B. Churnside (2014)
10.1021/ac403310k
Ambient mass spectrometry imaging: plasma assisted laser desorption ionization mass spectrometry imaging and its applications.
Baosheng Feng (2014)
Biological samples observed in vitro by Atomic Force Microscopy: Morphology and Elastic Properties
E. Pérez (2014)
10.1007/978-3-642-60147-7_2
In Situ Characterization of Extracellular Polymeric Substances (EPS) in Biofilm Systems
T. Neu (1999)
10.3182/20060912-3-DE-2911.00141
DESIGN AND CHARACTERIZATION OF A NOVEL SCANNER FOR HIGH-SPEED ATOMIC FORCE MICROSCOPY
G. Schitter (2006)
10.1016/J.SUSC.2007.04.096
Probing into adsorption behavior of human plasma fibrinogen on self-assembled monolayers with different chemical properties by scanning probe microscopy
T. Ishizaki (2007)
10.1049/MNL:20070030
Measurement of mechanical properties of polymer nanospheres by atomic force microscopy: effects of particle size
P. Paik (2007)
10.1002/anie.200903858
Consecutive formation of G-quadruplexes in human telomeric-overhang DNA: a protective capping structure for telomere ends.
Y. Xu (2009)
10.1016/0304-3991(93)90180-6
Immunogold labels: cell-surface markers in atomic force microscopy
C. A. Putman (1993)
Chemically Patterned Surfaces as Test Platforms to Study Magnetic and Solvent-Responsive Properties at the Nanoscale: Investigations Using Scanning Probe Microscopy
Shalaka A Kulkarni (2015)
10.1016/S0531-5565(02)00124-9
Single molecule fluorescence and force microscopy
G. Schütz (2002)
Elasticity of Biomolecules: probing, pushing and pulling using atomic force microscopy
M. Salumbides (2014)
10.1051/MMM:0199000105-6047100
A scanning force microscope designed for applied surface studies
R. Erlandsson (1990)
See more
Semantic Scholar Logo Some data provided by SemanticScholar