Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Light Emission From Silicon

S. Iyer, Y. Xie
Published 1993 · Materials Science, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The possibility induction of light emission from silicon, an indirect bandgap material in which radiative transitions are unlikely, raises several interesting and technologically important possibilities, especially the fabrication of a truly integrated optoelectronic microchip. In this article, the natural considerations that constrain silicon from emitting light efficiently are examined, as are several engineered solutions to this limitation. These include intrinsic and alloy-induced luminescence; radiatively active impurities; quantum-confined structures, including zone folding and the recent developments in porous silicon; and a hybrid approach, the integration of direct bandgap materials onto silicon.
This paper references
10.1063/1.95639
1.54‐μm electroluminescence of erbium‐doped silicon grown by molecular beam epitaxy
H. Ennen (1985)
10.1063/1.104454
Electroluminescence and photoluminescence from Si1−xGex alloys
N. Rowell (1991)
10.1103/PHYSREVLETT.58.729
Structurally induced optical transitions in Ge-Si superlattices.
Pearsall (1987)
10.1063/1.105512
Cooperative quantum confinement of excitons bound to isoelectronic impurity complexes in Si1−xGex/Si superlattices
R. A. Modavis (1991)
10.1103/PHYSREV.141.789
Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures
M. Cohen (1966)
10.1049/EL:19900130
Epitaxial lift-off GaAs LEDs to Si for fabrication of opto-electronic integrated circuits
I. Pollentier (1990)
10.1063/1.103561
Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
L. Canham (1990)
10.1088/0022-3727/10/4/010
Green luminescence efficiency in gallium phosphide
D. Wight (1977)
10.1063/1.96179
GaAs bipolar transistors grown on (100) Si substrates by molecular beam epitaxy
R. Fischer (1985)
10.1063/1.100211
Quantitative defect etching of GaAs on Si: Is it possible?
D. J. Stirland (1988)
10.1088/0031-9112/30/12/040
Optical Spectra of Transparent Rare Earth Compounds
D. W. Goodwin (1979)
10.1063/1.100819
Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates
M. Yamaguchi (1989)
10.1021/J150379A006
The Puzzle of Rare-earth Spectra in Solids.
J. Vleck (1937)
10.1063/1.94190
1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon
H. Ennen (1983)
10.1063/1.101152
Molecular beam epitaxy of metastable, diamond structure SnxGe1−x alloys
P. Pukite (1989)
10.1016/0040-6090(89)90423-9
SiGe strained layer superlattices
G. Abstreiter (1989)
10.1063/1.1722229
Copper Precipitation on Dislocations in Silicon
W. C. Dash (1956)
10.1063/1.105351
Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates
E. Fitzgerald (1991)
10.1063/1.97183
Optical emission at 1.32 μm from sulfur‐doped crystalline silicon
T. Brown (1986)
10.1049/EL:19920099
Silicon germanium optical waveguides with 0-5 dB/cm losses for singlemode fibre optic systems
S. F. Pesarcik (1992)
10.1063/1.106733
High quantum efficiency photoluminescence from localized excitons in Si1−xGex
L. Lenchyshyn (1992)
10.1103/PHYSREVB.36.4547
New optical transitions in strained Si-Ge superlattices.
Froyen (1987)
10.1063/1.349306
Evaluation of erbium‐doped silicon for optoelectronic applications
Y. Xie (1991)
10.1063/1.103523
Isoelectronic bound exciton emission from Si‐rich silicon‐germanium alloys
R. A. Modavis (1990)
10.1103/PHYSREVLETT.64.2406
Finite-temperature phase diagram of vicinal Si(100) surfaces.
Alerhand (1990)
10.1049/EL:19890099
MESFET lift-off from GaAs substrate to glass host
C. Hoof (1989)
10.1103/PHYSREVB.36.9683
Theory of optical transitions in Si/Ge(001) strained-layer superlattices.
M. Hybertsen (1987)
10.1103/PHYSREVLETT.69.1232
First-principles calculations of the electronic properties of silicon quantum wires.
Read (1992)
10.1103/PHYSREVLETT.69.1272
Optical properties of porous silicon: A first-principles study.
Búda (1992)
10.1063/1.104443
CONTROLLED SUBLIMATION GROWTH OF SINGLE CRYSTALLINE 4H-SIC AND 6H-SIC AND IDENTIFICATION OF POLYTYPES BY X-RAY DIFFRACTION
M. Kanaya (1991)
10.1063/1.102896
Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates
E. Yablonovitch (1990)
10.1143/JJAP.30.L668
Low threading dislocation density GaAs on Si(100) with InGaAs/GaAs strained-layer superlattice grown by migration-enhanced epitaxy
K. Nozawa (1991)
10.1103/PHYSREV.175.991
Toward a Theory of Isoelectronic Impurities in Semiconductors
Roger A. Faulkner (1968)
10.1063/1.106578
Luminescence degradation in porous silicon
M. Tischler (1992)
10.1063/1.98562
Concentration dependence of optical emission from sulfur‐doped crystalline silicon
T. Brown (1987)
10.1049/EL:19880706
GaAs MESFETs, ring oscillators and divide-by-2 integrated circuits fabricated on MBE grown GaAs on Si substrates
F. Ren (1988)
10.1088/0022-3719/14/9/004
Quantum delta -dimensional Landauer formula
M. Azbel' (1981)
10.1063/1.94524
Synthesis of metastable, semiconducting Ge‐Sn alloys by pulsed UV laser crystallization
S. Oguz (1983)
10.1063/1.1663883
Rapid degradation phenomenon in heterojunction GaAlAs-GaAs lasers
P. Petroff (1974)
10.1103/PHYSREVB.18.4402
Polar heterojunction interfaces
W. Harrison (1978)
10.1063/1.107565
Luminescence cycling and defect density measurements in porous silicon: Evidence for hydride based model
S. Prokes (1992)
10.1063/1.105338
Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect
G. V. Treyz (1991)
10.1063/1.325920
Fabrication of 6H‐SiC light‐emitting diodes by a rotation dipping technique: Electroluminescence mechanisms
M. Ikeda (1979)
For a good introduction, see J. I. Pankove, Optical Processes in Semiconductors
(1971)
10.1016/0022-0248(78)90449-9
High efficiency GaAs thin film solar cells by peeled film technology
M. Konagai (1978)
10.1016/0960-8974(92)90021-H
Single crystals of SiC and their application to blue LEDs
K. Koga (1992)



This paper is referenced by
10.1007/978-94-010-0149-6_22
Theory Of Silicon Nanocrystals
C. Delerue (2003)
10.1016/J.MATCHEMPHYS.2010.07.044
Effects of the passivating coating on the properties of silicon nanocrystals
N. Tit (2010)
10.1007/978-94-011-2092-0_20
NEAR SURFACE STATE IN SI AND THEIR POSSIBLE ROLE IN THE LUMINESCENCE OF POROUS SILICON
D. Bois (1993)
10.1016/J.OPTMAT.2004.08.058
Correlation between electroluminescence and structural properties of Si nanoclusters
A. Irrera (2005)
10.1063/1.355827
Correlation of the structural and optical properties of luminescent, highly oxidized porous silicon
A. G. Cullis (1994)
10.1063/1.124096
Tailorable, Visible Light Emission From Silicon Nanocrystals
J. Wilcoxon (1999)
10.1063/1.109610
Electron paramagnetic resonance observation of trigonally symmetric Si dangling bonds in porous silicon layers: Evidence for crystalline Si phase
J. Mao (1993)
10.1063/1.1342026
Microstructural and photoluminescence studies of germanium nanocrystals in amorphous silicon oxide films
W. K. Choi (2001)
10.1007/BF02464699
Porous-silicon microcavities
Lorenzo Pavesi (1996)
10.1063/1.1505117
Excitation and de-excitation properties of silicon quantum dots under electrical pumping
A. Irrera (2002)
10.1063/1.109745
Energy bands in quantum confined silicon light‐emitting diodes
H. P. Maruska (1993)
10.1016/S0038-1098(97)00170-1
MINIMUM IN THE BANDGAP AND LUMINESCENCE PEAK ENERGY OF RED-LUMINESCENT Si NANOPARTICLES IN POROUS SILICON
K. Murayama (1997)
10.1007/BF00125880
Silicon-germanium heterostructures — advanced materials and devices for silicon technology
T. Whall (1995)
10.1016/S1386-9477(00)00201-0
Structural and electronic properties of bare and hydrogenated silicon clusters
Ş. Katırcıoğlu (2001)
10.1063/1.3682559
The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots.
H. M. Jaeger (2012)
10.1016/B978-012513760-7/50036-8
Silicon-based nanostructures
T. Sidiki (2000)
10.1016/B978-1-4832-8380-7.50090-0
Light emission from porous silicon
U. Gösele (1994)
10.1007/978-94-010-0149-6_11
Luminescence From Si/Sio2 Nanostructures
Y. Kanemitsu (2003)
10.1063/1.1419035
Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide
H. Han (2001)
10.1016/J.PHYSLETA.2011.06.019
Substantial band-gap narrowing of a-Si 3N 4 induced by heavy Al doping
W. Xiao (2011)
10.1016/S0375-9601(03)00917-4
Strong violet–blue photoluminescence from Ge oxide films by magnetron sputtering
J. Li (2003)
10.1364/ipr.2002.ifb1
Silicon Microphotonics
L. Kimerling (2002)
10.1088/1742-6596/497/1/012005
Two-quantum photon-phonon laser
A. A. Zadernovsky (2014)
10.1088/0957-4484/16/6/036
The light-emitting properties of Ge nanocrystals grown by pulsed laser deposition
Xiying Ma (2005)
10.7567/JJAP.56.05DA01
Prospects for silicon-silicide integrated photonics
N. Galkin (2017)
10.1063/1.110412
Optoelectronic applications of porous polycrystalline silicon
N. Kalkhoran (1993)
10.1002/PHBL.19940500311
Leuchtendes poröses Silizium: Quantum-Confinement oder kalte Kernfusion der Halbleiterphysik?
U. Gösele (1994)
10.1103/PhysRevB.68.035404
Enhanced radiative transition inSinGemnanoclusters
M. Yu (2003)
10.1016/S1386-9477(99)00085-5
Visible light emission from Si/SiO2 multilayers in planar microcavities
D. Lockwood (2000)
10.1016/S0080-8784(08)62504-1
Chapter 6 Porous Silicon: Photoluminescence and Electroluminescent Devices
P. Fauchet (1997)
10.7567/JJAP.52.04CC13
Experimental Study on Surface-Orientation/Strain Dependence of Phonon Confinement Effects and Band Structure Modulation in Two-Dimensional Si Layers
T. Mizuno (2013)
10.1007/978-3-322-91572-6_2
Basistechnologien der Mikrosystemtechnik
F. Voelklein (2000)
See more
Semantic Scholar Logo Some data provided by SemanticScholar