Online citations, reference lists, and bibliographies.
← Back to Search

Relative Contributions Of Eyelid And Eye-retraction Motor Systems To Reflex And Classically Conditioned Blink Responses In The Rabbit

Rocío Leal-Campanario, José Alberto Barradas-Bribiescas, José M. Delgado-García, Agnès Gruart

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Early compensatory mechanisms between eyelid and eye-retraction motor systems following selective nerve and/or muscle lesions were studied in behaving rabbits. Reflex and conditioned eyelid responses were recorded in 1) controls and following 2) facial nerve section, 3) retractor bulbi muscle removal, and 4) facial nerve section and retractor bulbi muscle removal. Animals were classically conditioned with a delay paradigm by using a tone (350 ms, 600 Hz, 90 dB) as conditioned stimulus, followed 250 ms later by an air puff (100 ms, 3 kg/cm2) as unconditioned stimulus. Conditioned eyelid responses generated in the absence of the facial motor system (i.e., by the almost sole action of the retractor bulbi motor system) presented a wavy profile, due to the succession of eye-retraction movements. Learned eyelid responses generated in the absence of the eye-retraction motor system (i.e., by the almost exclusive action of the facial motor system) were similar to those of controls, but were reduced in amplitude and peak velocity. Finally, the isolated action of the extraocular recti muscle produced very small eyelid movements during both reflex and learned eyelid responses. Although each of these motor systems could act independently of the others, the motor result of their joint action did not coincide with the simple addition of their separate actions. Both facial and eye-retraction motor systems appear to be necessary for normal eyelid closure during blinking in rabbits. Central reorganization to compensate for loss of either of these systems may explain why the response of each system in isolation cannot be added linearly to obtain normal blink response magnitudes and profiles.