Online citations, reference lists, and bibliographies.
← Back to Search

GABA Neurotransmission In The Cerebellar Interposed Nuclei: Involvement In Classically Conditioned Eyeblinks And Neuronal Activity

D. Aksenov, N. Serdyukova, K. Irwin, V. Bracha

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The cerebellar interposed nuclei (IN) are an essential part of circuits that control classically conditioned eyeblinks in the rabbit. The function of the IN is under the control of GABAergic projections from Purkinje cells of the cerebellar cortex. The exact involvement of cerebellar cortical input into the IN during eyeblink expression is not clear. While it is known that the application of γ-aminobutyric acid-A (GABAA) agonists and antagonists affects the performance of classically conditioned eyeblinks, the effects of these drugs on IN neurons in vivo are not known. The purpose of the present study was to measure the effects of muscimol and picrotoxin on the expression of conditioned eyeblinks and the activity of IN cells simultaneously. Injections of muscimol abolished conditioned responses and either silenced or diminished the activity of IN cells. Two injections were administered in each picrotoxin experiment. The first injection of picrotoxin slightly modified the timing and amplitude of the eyeblink, produced mild tonic eyelid closure, increased tonic activity of IN cells, and reduced the amplitude of the neural responses. The second injection of picrotoxin abolished conditioned responses, further increased tonic eyelid closure, dramatically elevated the tonic activity of IN cells, and in most cases, abolished neuronal responses. These results demonstrate that both GABAA-mediated inactivation and tonic up-regulation of IN cells can interrupt the expression of conditioned eyeblinks and that this behavioral effect is accompanied by the suppression of the neuronal activity correlates of the conditioned stimulus and response.