Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Responses To Auditory Stimuli In Macaque Lateral Intraparietal Area I. Effects Of Training

Alexander Grunewald, Jennifer F. Linden, Richard A. Andersen

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
The lateral intraparietal area (LIP) of macaques has been considered unresponsive to auditory stimulation. Recent reports, however, indicate that neurons in this area respond to auditory stimuli in the context of an auditory-saccade task. Is this difference in auditory responsiveness of LIP due to auditory-saccade training? To address this issue, LIP responses in two monkeys were recorded at two different times: before and after auditory-saccade training. Before auditory-saccade training, the animals had never been trained on any auditory task, but had been trained on visual tasks. In both sets of experiments, activity of LIP neurons was recorded while auditory and visual stimuli were presented and the animals were fixating. Before training, 172 LIP neurons were recorded. Among these, the number of cells responding to auditory stimuli did not reach significance, whereas about one-half of the cells responded to visual stimuli. An information theory analysis confirmed that no information about auditory stimulus location was available in LIP neurons in the experiments before training. After training, activity from 160 cells was recorded. These experiments showed that 12% of cells in area LIP responded to auditory stimuli, whereas the proportion of cells responding to visual stimuli remained about the same as before training. The information theory analysis confirmed that, after training, information about auditory stimulus location was available in LIP neurons. Auditory-saccade training therefore generated responsiveness to auditory stimuli de novo in LIP neurons. Thus some LIP cells become active for auditory stimuli in a passive fixation task, once the animals have learned that these stimuli are important for oculomotor behavior.