Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Tumor Necrosis Factor-α And Ceramide Induce Cell Death Through Different Mechanisms In Rat Mesangial Cells

Yan-Lin Guo, Baobin Kang, Li-Jun Yang, John R. Williamson

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
It has been proposed that ceramide acts as a cellular messenger to mediate tumor necrosis factor-α (TNF-α)-induced apoptosis. Based on this hypothesis, it was postulated that resistance of some cells to TNF-α cytotoxicity was due to an insufficient production of ceramide on stimulation by TNF-α. The present study was initiated to investigate whether this was the case in mesangial cells, which normally are insensitive to TNF-α-induced apoptosis. Our results indicate that although C2ceramide was toxic to mesangial cells, the cell death it induced differed both morphologically and biochemically from that induced by TNF-α in the presence of cycloheximide (CHX). The most apparent effect of C2ceramide was to cause cells to swell, followed by disruption of the cell membrane. It is evident that C2ceramide caused cell death by necrosis, whereas TNF-α in the presence of CHX killed the cells by apoptosis. C2ceramide did not mimic the effects of TNF-α on the activation of c-Jun NH2-terminal protein kinase and nuclear factor-κB transcription factor. Although mitogen-activated protein kinase [extracellular signal-related kinase (ERK)] was activated by both C2ceramide and TNF-α, such activation appeared to be mediated by different mechanisms as judged from the kinetics of ERK activation. Furthermore, the cleavage of cytosolic phospholipase A2during cell death induced by C2ceramide and by TNF-α in the presence of CHX showed distinctive patterns. The present study provides evidence that apoptosis and necrosis use distinctive signaling machinery to cause cell death.