Online citations, reference lists, and bibliographies.
← Back to Search

Feasibility Of Stabilized Zn And Pb Contaminated Soils As Roadway Subgrade Materials

Mingli Wei, Hao Ni, Shiji Zhou, Yuan Li

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
The authors have developed a new binder, KMP, which is made from oxalic acid-activated phosphate rock, monopotassium phosphate (KH2PO4), and reactive magnesia (MgO). This study explores the acid neutralization capacity, strength characteristics, water-soaking durability, resilient modulus, and pore size distribution of KMP stabilized soils with individual Zn, Pb, or coexisting Zn and Pb contaminants. For comparison purpose, Portland cement (PC) is also tested. The results show that KMP stabilized soils have a higher acid buffering capacity than PC stabilized soils, regardless of the soil contamination conditions. The water stability coefficient and resilient modulus of the KMP stabilized soils are found to be higher than PC stabilized soils. The reasons for the differences in these properties between KMP and PC stabilized soils are interpreted based on the stability and dissolubility of the main hydration products of the KMP and PC stabilized soils, the soil pore distribution, and concentration of Mg or Ca leached from the KMP and PC stabilized soils obtained from the acid neutralization capacity tests. Overall, this study demonstrates that the KMP is effective in stabilizing soils that are contaminated with Zn or Pb alone and mixed Zn and Pb contaminants, and the KMP stabilized soils are better suited as roadway subgrade material.