Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Effect Of Interphase Zone On The Overall Elastic Properties Of Nanoparticle-reinforced Polymer Nanocomposites

J. Amraei, J. E. Jam, B. Arab, R. Firouzabadi
Published 2019 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
In the current work, the effect of interphase region on the mechanical properties of polymer nanocomposites reinforced with nanoparticles is studied. For this purpose, a closed-form interphase model as a function of radial distance based on finite-size representative volume element is suggested to estimate the mechanical properties of particle-reinforced nanocomposites. The effective Young’s and shear moduli of thermoplastic polycarbonate-based nanocomposites for a wide range of sizes and volume fractions of silicon carbide nanoparticles are investigated using the proposed interphase model and molecular dynamics simulations. In order to investigate the effect of particle size, several unit cells of the same volume fraction, but with different particle radii have been considered. The micromechanics-based homogenization results are in good agreement with the results of molecular dynamics simulations for all models. This study demonstrates that the suggested micromechanical interphase model has the capacity to estimate effective mechanical properties of polymer-based nanocomposites reinforced with spherical inclusions.
This paper references
10.1016/J.IJSOLSTR.2015.06.010
Interphase zone effect on the spherically symmetric elastic response of a composite material reinforced by spherical inclusions
R. Sburlati (2015)
10.1021/JP992913P
COMPASS Force Field for 14 Inorganic Molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in Liquid Phases
J. Yang (2000)
10.1016/s1369-7021(03)01139-8
Nanocomposite Science And Technology
P. Ajayan (2003)
10.1103/PHYSREV.173.787
Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3 C , 4 H , 6 H , 1 5 R , and 2 1 R
D. Feldman (1968)
10.1006/JCPH.1995.1039
Fast parallel algorithms for short-range molecular dynamics
S. Plimpton (1993)
10.1016/J.IJENGSCI.2016.04.006
On the overall viscoelastic behavior of graphene/polymer nanocomposites with imperfect interface
R. Hashemi (2016)
10.1115/1.2788912
Micromechanics: Overall Properties of Heterogeneous Materials
S. Nemat-Nasser (1993)
10.1016/J.JEURCERAMSOC.2012.04.016
A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide
X. Luo (2012)
10.1016/J.COMPOSITESB.2016.10.032
An updated micromechanical model based on morphological characterization of carbon nanotube nanocomposites
Michela Talò (2017)
10.1016/S1089-3156(98)00042-7
The COMPASS force field: parameterization and validation for phosphazenes
H. Sun (1998)
10.1103/PHYSREVB.37.6991
New empirical approach for the structure and energy of covalent systems.
Tersoff (1988)
10.2320/MATERTRANS.45.1442
Nanomechanical Behavior of β-SiC Nanowire in Tension: Molecular Dynamics Simulations
T. Kim (2004)
10.1023/A:1016008432083
Modeling of the Interphase of Polymer-Matrix Composites: Determination of Its Structure and Mechanical Properties
O. K. Buryan (2002)
10.1021/JP015591+
Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces
S. V. Frankland (2002)
10.1002/APP.28053
Thermal properties and flame retardancy of polycarbonate/hydroxyapatite nanocomposite
Quan-Xiao Dong (2008)
10.1021/MA00087A004
Molecular Modeling of Polycarbonate. 1. Force Field, Static Structure, and Mechanical Properties
C. F. Fan (1994)
10.1002/APP.31460
Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling
A. Montazeri (2010)
10.1002/ANDP.19213690304
Die Berechnung optischer und elektrostatischer Gitterpotentiale
P. Ewald (1921)
10.1103/PHYSREVA.31.1695
Canonical dynamics: Equilibrium phase-space distributions.
Hoover (1985)
The effect of particle size in alumina nanocomposites
L Lopez (2003)
10.1016/J.CERAMINT.2013.02.047
Effect of micro- and nano-fillers on the properties of silicone rubber-alumina flexible microwave substrate
L. K. Namitha (2013)
10.1201/9781315364896-15
Modeling of the mechanical properties of nanoparticle / polymer composites
G. Odegard (2004)
10.1002/APP.1380
Synthesis and properties of polycarbonate‐poly(methyl methacrylate) graft copolymers by polycondensation of macromonomers
Masaya Okamoto (2001)
10.1016/0020-7225(84)90033-8
Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions
G. Weng (1984)
10.1016/J.POLYMDEGRADSTAB.2011.09.019
Effects of organoclay modifiers on the flammability, thermal and mechanical properties of polycarbonate nanocomposites filled with a phosphate and organoclays
J. Feng (2012)
10.1515/epoly-2014-0065
A study on the relationship between polycarbonate microstructure and performance as determined by a combined experimental and molecular dynamics simulation method
X. Wang (2014)
10.1016/J.COMPSCITECH.2008.11.022
Simulation of interphase percolation and gradients in polymer nanocomposites
R. Qiao (2009)
10.1177/0021998308095503
Characterizing Mechanical Properties of Particulate Nanocomposites Using Micromechanical Approach
J. Tsai (2008)
10.1021/JP991786U
Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field
S. Bunte (2000)
10.1002/PC.750050413
The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites
G. Tandon (1984)
10.1016/J.COMPSTRUCT.2011.03.013
Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading
M. Ayatollahi (2011)
10.1115/1.2787239
Effect of the Interphase Zone on the Bulk Modulus of a Particulate Composite
M. Lutz (1996)
10.1016/0001-6160(73)90064-3
Average stress in matrix and average elastic energy of materials with misfitting inclusions
T. Mori (1973)
10.1002/jcc.10316
Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains
M. McQuaid (2004)
10.1016/J.COMPSCITECH.2013.01.002
Molecular modeling of EPON-862/graphite composites: Interfacial characteristics for multiple crosslink densities
C. Hadden (2013)
10.1016/J.MATERRESBULL.2013.05.095
Investigating the nanostructure and thermal properties of chiral poly(amide-imide)/Al2O3 compatibilized with 3-aminopropyltriethoxysilane
S. Mallakpour (2013)
10.1021/JP980939V
COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds
H. Sun (1998)
10.1021/MA500556Q
How Thick Is the Polymer Interphase in Nanocomposites? Probing It by Local Stress Anisotropy and Gas Solubility
Evangelos Voyiatzis (2014)
10.1103/PHYSREVB.69.224108
Mechanical properties and elastic constants due to damage accumulation and amorphization in SiC
Fei Gao (2004)
10.1016/J.COMPSTRUCT.2004.01.010
Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites
N. Chisholm (2005)
10.1016/J.IJENGSCI.2013.08.003
Effective moduli of nanoparticle reinforced composites considering interphase effect by extended double-inclusion model – Theory and explicit expressions
P. Lu (2013)
10.1016/J.FLUID.2003.08.019
Fluid density predictions using the COMPASS force field
D. Rigby (2004)
10.1007/s00894-013-1906-9
The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation
A. Shokuhfar (2013)
10.4028/www.scientific.net/KEM.312.199
The Effect of Interphase on the Elastic Modulus of Polymer Based Nanocomposites
S. Saber-Samandari (2006)
10.1098/rspa.1957.0133
The determination of the elastic field of an ellipsoidal inclusion, and related problems
J. D. Eshelby (1957)
10.1063/1.2724570
Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide
P. Vashishta (2007)
10.1063/1.2965486
Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites
S. Yang (2008)
10.1016/J.POLYMER.2015.11.030
Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning
J. R. Bautista-Quijano (2016)
10.1002/PEN.21205
Thermal conductivity of polymer nanocomposites made with carbon nanofibers
S. Agarwal (2008)
10.1016/J.MECHMAT.2006.02.010
A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part II—Application and scaling laws
Huiling Duan (2007)
10.1016/J.CAP.2015.11.021
Elastic properties and equation of state for polycarbonate by high-pressure Brillouin spectroscopy
Y. Ko (2016)
10.1088/0965-0393/17/4/045004
Influence of representative volume element size on predicted elastic properties of polymer materials
P. Valavala (2009)
10.1002/APP.34498
Experimental, analytical, and numerical investigation of interphasial stress and strain fields in MWCNT polymer composites
G. Papanicolaou (2012)
10.1016/J.POLYMER.2015.06.060
A simple technique for determination of interphase properties in polymer nanocomposites reinforced with spherical nanoparticles
Y. Zare (2015)
10.1016/J.COMPSCITECH.2005.10.004
Reinforcement mechanisms in MWCNT-filled polycarbonate
A. Eitan (2006)
10.1016/J.COMMATSCI.2015.11.036
A novel MD-based procedure to obtain the interphase Young’s modulus in nanocomposites
Saeed Akbari Shandiz (2016)
10.1016/J.COMMATSCI.2012.03.010
Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus
R. Peng (2012)
10.1016/J.POLYMDEGRADSTAB.2014.12.021
Investigation of the alumina nanoparticle role in the enhancement of the mechanical properties of polyamide/polycarbonate blends
Fouad Laoutid (2015)
10.1080/00268978400101201
A molecular dynamics method for simulations in the canonical ensemble
S. Nosé (1984)
10.1063/1.448118
Molecular dynamics with coupling to an external bath
H. Berendsen (1984)
10.1103/PHYSREVB.75.085209
Simulations of the mechanical properties of crystalline, nanocrystalline, and amorphous SiC and Si
V. Ivashchenko (2007)
MODELING TECHNIQUES FOR DETERMINATION OF MECHANICAL PROPERTIES OF POLYMER NANOCOMPOSITES
P. Valavala (2005)
10.1016/J.IJENGSCI.2012.06.017
Overall properties in fibrous elastic composite with imperfect contact condition
F. J. Sabina (2012)
10.1007/s00894-013-1996-4
Molecular dynamics simulation of cross-linked urea-formaldehyde polymers for self-healing nanocomposites: prediction of mechanical properties and glass transition temperature
B. Arab (2013)
10.1103/PHYSREVB.39.5566
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems.
Tersoff (1989)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar