Online citations, reference lists, and bibliographies.
← Back to Search

The Influence Of Carbonate On The Atomic Structure And Reactivity Of Hydroxyapatite

D. Nelson
Published 1981 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
A series of synthetic carbonated and non-carbonated apatites was investigated using high resolution transmission electron microscopy, and their dissolution behavior was tested under sink conditions, using the rotating disc method. n-Beam lattice images of the apatite samples were of a resolution greater than has been previously reported, and revealed an increase in crystalline disorder with the incorporation of carbonate in the apatite structure. This resulted in an increased rate of dissolution and a decreased activation energy for dissolution for the carbonated apatites. Thus, carbonate increased the reactivity of hydroxyapatite.
This paper references
10.1177/00220345760550033201
Kinetics and Mechanism of Hydroxyapatite Crystal Dissolution in Weak Acid Buffers Using the Rotating Disk Method
M. Wu (1976)
10.1016/0003-9969(79)90057-8
A mechanism for dental caries based on chemical processes and diffusion phenomena during in-vitro caries simulation on human tooth enamel.
J. Featherstone (1979)
10.1159/000260527
An electron microscope study of modifications to defect regions in dental enamel and synthetic apatites.
J. Featherstone (1981)
10.1039/AN9689300244
Micro determination of carbonate in dental enamel.
J. Weatherell (1968)
10.1107/S0021889873008459
The direct observation of the structure of real crystals by lattice imaging
J. Allpress (1973)
n - Beam Lattice Images II
M. A. O'KEEFE (1975)
10.1016/0003-9969(72)90137-9
The inorganic composition and solubility of dental enamel from several specified population groups.
T. Cutress (1972)
10.1107/S0567739472001445
n-Beam lattice images. II. Methods of calculation
D. F. Lynch (1972)
10.1177/00220345740530020601
Implications of Atomic Substitutions and Other Structural Details in Apatites
R. Young (1974)
10.1107/S0021889870005617
Dislocations and fault surfaces in natural apatite
P. Phakey (1970)
10.1177/00220345750540040601
Thermodynamic Solubility Product of Human Tooth Enamel: Powdered Sample
P. Patel (1975)
10.1159/000259848
Dislocations and dissolution of enamel. Theoretical considerations.
J. Arends (1973)
10.1159/000259845
The role of carbonate in dental mineral.
G. S. Ingram (1972)
10.1107/S0567739475000642
n‐Beam lattice images. V. The use of the charge‐density approximation in the interpretation of lattice images
D. F. Lynch (1975)
10.1159/000259857
Loss of carbonate during the first stages of enamel caries.
A. Hallsworth (1973)
10.1159/000260243
A new method of measuring hydroxyapatite dissolution rate.
G. Forward (1977)
10.1063/1.3061720
Introduction to solid state physics
C. Kittel (1953)
10.1038/206403a0
Effect of Carbonate on the Lattice Parameters of Apatite
Racquel ZAPANTA-LEGEROS (1965)



This paper is referenced by
10.1177/00220345820610111301
Paracrystalline Disorder of Biological and Synthetic Carbonate-substituted Apatites
D. Nelson (1982)
10.1177/00220345850640031601
Some Physico-chemical Properties of Deciduous Enamel of Children with and Without Pre-natal Fluoride Supplementation (PNF)
R. Legeros (1985)
10.1007/PL00005826
Relationships Among Carbonated Apatite Solubility, Crystallite Size, and Microstrain Parameters
A. Baig (1999)
10.1177/00220345930720090401
Influence of Carbonate on Sintering of Apatites
Y. Koda (1993)
10.1016/S0022-0248(02)02332-1
Constant composition kinetics study of carbonated apatite dissolution
R. Tang (2003)
10.1002/BSPY.350010105
Palaeodental studies using FT-Raman spectroscopy
H. Edwards (1995)
10.1016/J.JCIS.2004.06.016
Apparent solubility distributions of hydroxyapatite and enamel apatite.
R. Shellis (2004)
HIDROXIAPATITA CARBONATADA, UNA OPCIÓN COMO BIOMATERIAL PARA IMPLANTES: UNA REVISIÓN DEL ESTADO DEL ARTE
Yesica L. Botero (2016)
10.1177/10454411950060020701
Molecular mechanisms of dental enamel formation.
J. Simmer (1995)
10.1007/s002239900628
Metastable Equilibrium Solubility Behavior of Bone Mineral
A. Baig (1999)
10.1002/(SICI)1097-4636(200002)49:2<176::AID-JBM4>3.0.CO;2-8
Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats.
J. Barralet (2000)
10.1016/j.oooo.2012.04.018
Autogenous teeth used for bone grafting: a comparison with traditional grafting materials.
Y. Kim (2014)
10.1016/j.morpho.2017.06.002
Synthesis of β-tricalcium phosphate.
H. Chaair (2017)
10.3233/BME-1992-2402
Chemical characterization of a potassium hydroxyapatite prepared by soaking in potassium chloride and carbonate solutions.
E. Nordstroem (1992)
10.1002/(SICI)1097-4636(199804)40:1<104::AID-JBM12>3.0.CO;2-O
Dissolution of particulate hydroxyapatite in a macrophage organelle model.
R. Bloebaum (1998)
10.1039/C7TB01794D
Antimicrobial Hydroxyapatite-Gelatin-Silica Composite Pastes with Tunable Setting Properties.
V. Uskoković (2017)
10.1177/00220345830620100801
Acid Reactivity of Carbonated Apatites with Strontium and Fluoride Substitutions
J. Featherstone (1983)
10.2136/SSSAJ2003.1935
Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites.
B. Sutter (2003)
10.1016/j.jsb.2013.11.006
Elemental and chemical characterization of dolphin enamel and dentine using X-ray and Raman microanalyzes (Cetacea: Delphinoidea and Inioidea).
C. Loch (2014)
Development Of In Vitro Models To Examine Cell-Mineral Interaction And Cell-Mediated Mineral Formation
D. Lin (2013)
10.1007/978-3-642-68574-3_6
Structures of Biological Minerals
R. A. Young (1982)
10.1023/A:1008975812793
Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite
J. Barralet (2000)
10.1159/000080585
Acid Resistance of Enamel Subsurface Lesions Remineralized by a Sugar-Free Chewing Gum Containing Casein Phosphopeptide-Amorphous Calcium Phosphate
Y. Iijima (2004)
10.1016/J.GCA.2006.07.009
Quantification of diagenesis in Cenozoic sharks: Elemental and mineralogical changes
Joann Labs-Hochstein (2006)
10.1007/BF02405026
Synthetic apatites containing Na, Mg, and CO3 and their comparison with tooth enamel mineral
J. Featherstone (2006)
10.1111/J.1600-0722.1985.TB01300.X
Relationships between carbonate, sex and other macroelements in human whole enamel.
M. Knuuttila (1985)
10.1007/s10856-009-3752-y
Effects of carbonate on hydroxyapatite formed from CaHPO4 and Ca4(PO4)2O
J. Sturgeon (2009)
Remineralisation of decalcified tooth enamel consequent to orthodontic treatment
Emily K.Y. Lam (2010)
10.1007/s10856-012-4831-z
Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid
X. Liu (2012)
10.1007/978-3-642-61736-2_12
Phosphate Minerals in Human Tissues
R. Legeros (1984)
10.1016/S0142-9612(01)00180-6
Measurements of the solubilities and dissolution rates of several hydroxyapatites.
M. Fulmer (2002)
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA LUMA FABIANE ALMEIDA EFEITO DO FLUORETO DE DENTIFRÍCIO NA REDUÇÃO DA DESMINERALIZAÇÃO DO ESMALTE FLUORÓTICO SUBMETIDO AO PROCESSO DE CÁRIE EFFECT OF FLUORIDE FROM DENTIFRICE ON REDUCTION OF DEMINERALIZATION OF FLUOROTIC
M. D. F. Almeida (2006)
See more
Semantic Scholar Logo Some data provided by SemanticScholar