Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Von Willebrand Factor Competes With Fibrin For Occupancy Of GPIIb:IIIa On Thrombin-stimulated Platelets

RR Hantgan, WL Nichols, ZM Ruggeri

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Abstract We have investigated two major questions related to the molecular basis of interactions between the three-dimensional fibrin network and thrombin-stimulated human platelets. First, what are the roles played by glycoproteins (GP) Ib and IIb:IIIa in linking the fibrin clot tightly to the platelet surface? Second, does von Willebrand factor (vWF) modulate the extent of platelet-fibrin interactions? Quantitative fluorescence microscopy (microfluorimetry) has been used to determine the quantity of fluorescein-labeled fibrin bound to the surface of thrombin-stimulated, gel-filtered platelets (the supernatants of which contained small quantities of vWF) in the presence/absence of receptor- specific and vWF-specific monoclonal antibodies (MoAbs), as well as exogenous vWF. A MoAb specific for the GPIIb:IIIa complex exhibited a concentration-dependent inhibition of fibrin binding, whereas a MoAb specific for GPIb was ineffective in this regard. Similarly, a MoAb that recognizes the N-terminal region of vWF involved in GPIb binding did not influence fibrin binding. In contrast, a MoAb that binds to a C- terminal region of vWF involved in GPIIb:IIIa recognition caused a specific, concentration-dependent increase in the quantity of platelet- bound fibrin. We also found that exogenous vWF caused a concentration- dependent decrease in fibrin binding. These results support the hypothesis that vWF and fibrin, both of which are multimeric adhesive ligands, compete for occupancy of the GPIIb:IIIa complex on thrombin- stimulated platelets.