Online citations, reference lists, and bibliographies.
← Back to Search

Nanotrenches: An Optical Lithography Process For High-Aspect-Ratio Sub-100 Nm Gaps

F. Rahman
Published 2012 · Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
This paper references
10.1021/nl803520r
On the electric conductivity of highly ordered monolayers of monodisperse metal nanoparticles.
Denis Greshnykh (2009)
10.1063/1.120195
Nanoscale metal/self-assembled monolayer/metal heterostructures
C. Zhou (1997)
10.1126/SCIENCE.290.5494.1131
Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices.
C. Black (2000)
10.1002/smll.200900358
Nanoscale forces and their uses in self-assembly.
K. Bishop (2009)
10.1002/ADMA.200306091
Comparison of Electronic Transport Measurements on Organic Molecules
Adi Salomon (2003)
10.1021/cr0680134
Charge transport in nanoparticle assemblies.
Amir Zabet-Khosousi (2008)
10.1038/nnano.2008.237
Molecular junctions based on aromatic coupling.
S. Wu (2008)
10.1021/NL048372J
Effect of local environment on molecular conduction: isolated molecule versus self-assembled monolayer.
Y. Selzer (2005)
10.1116/1.2357968
Chemically responsive molecular transistors fabricated by self-aligned lithography and chemical self-assembly
J. Tang (2006)
10.1038/nnano.2009.373
Single-donor ionization energies in a nanoscale CMOS channel.
M. Pierre (2010)
10.1073/pnas.0404450101
Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography.
A. Javey (2004)
10.1103/PhysRevLett.78.4087
Gate-Voltage Studies of Discrete Electronic States in Aluminum Nanoparticles
D. Ralph (1997)
10.1016/J.SPMI.2008.11.004
Large 2D monolayer assemblies of iron oxide nanocrystals by the Langmuir–Blodgett technique
M. Pauly (2009)
10.1103/PHYSREVB.66.075417
Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules
K. Mueller (2002)
10.1021/LA0356349
Metallic contact formation for molecular electronics: interactions between vapor-deposited metals and self-assembled monolayers of conjugated mono- and dithiols.
B. de Boer (2004)
10.1126/SCIENCE.278.5336.252
Conductance of a Molecular Junction
M. Reed (1997)
10.1002/CPHC.200700475
Self-assembling nanoparticles at surfaces and interfaces.
Sachin Kinge (2008)
10.1126/science.272.5261.523
Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes
H. Dai (1996)
10.1063/1.2209208
Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques
R. Negishi (2006)
10.1063/1.2895644
Nanogaps with very large aspect ratios for electrical measurements
A. Fursina (2008)
10.1088/0957-4484/16/6/002
Shadow-evaporated nanometre-sized gaps and their use in electrical studies of nanocrystals
Lianfeng Sun (2005)
10.1063/1.1899772
Magnetic directed assembly of molecular junctions
D. P. Long (2005)
10.1063/1.122540
Conduction properties of metal/organic monolayer/semiconductor heterostructures
D. Li (1998)
10.1088/0957-4484/21/33/335303
Nanotrench for nano and microparticle electrical interconnects.
J-F Dayen (2010)
10.1103/PHYSREVB.65.172405
First-order metal-insulator transition and spin-polarized tunneling in Fe 3 O 4 nanocrystals
P. Poddar (2002)
10.1038/nature04699
Towards molecular electronics with large-area molecular junctions
H. Akkerman (2006)
10.1016/0375-9601(92)90830-F
Charge fluctuations in systems of mesoscopic tunnel junctions
D. Golubev (1992)
10.1016/S1369-7021(02)05227-6
Moletronics: future electronics
K. Kwok (2002)
10.1016/S0169-4332(02)00695-5
Adventures in molecular electronics: how to attach wires to molecules
B. C. Haynie (2003)
10.1103/PHYSREVB.73.020402
Magnetotransport of magnetite nanoparticle arrays
H. Zeng (2006)
10.1002/smll.201100931
Co-tunneling enhancement of the electrical response of nanoparticle networks.
M. Pauly (2012)
10.1038/39535
A single-electron transistor made from a cadmium selenide nanocrystal
D. Klein (1997)
10.1039/b811400e
Nanostructured biosensing platform-shadow edge lithography for high-throughput nanofabrication.
John Bai (2009)
10.1021/nl802487j
Light-controlled conductance switching of ordered metal-molecule-metal devices.
S. J. van der Molen (2009)
10.1038/386474A0
Individual single-wall carbon nanotubes as quantum wires
S. Tans (1997)
10.1002/SMLL.200600389
High-aspect-ratio nanogap electrodes for averaging molecular conductance measurements.
Sebastian M. Luber (2007)



Semantic Scholar Logo Some data provided by SemanticScholar