Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Enhanced Infrared Spectroscopy Using Small-gap Antennas Prepared With Two-step Evaporation Nanosphere Lithography.

J. M. Hoffmann, H. Janssen, D. Chigrin, T. Taubner
Published 2014 · Materials Science, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
We use nanosphere lithography in combination with two evaporation steps to create bow-tie like infrared antennas with small gaps. The angle of the sample with respect to the evaporation source is changed between two evaporation steps resulting in a displacement of the respective antenna arrays and, therefore, in decreased antenna-gaps. Furthermore, we demonstrate the gap-dependency of surface-enhanced infrared absorption (SEIRA) spectroscopy using the absorption band of the natural SiO(2)-layer of the silicon substrate and antennas with different gap size. A multi-oscillator-model is used to describe the Fano-like spectral coupling of the antenna resonances with the SiO(2) absorption band.
This paper references
10.1002/SMLL.200400099
Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks.
A. Kosiorek (2005)
10.1002/PSSB.200983933
Surface enhanced infrared spectroscopy using gold nanoantennas
A. Pucci (2010)
10.1002/ANIE.200702072
Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate.
H. Wang (2007)
10.1116/1.571227
Submicroscopic pattern replication with visible light
U. Fischer (1981)
10.1021/JP804088Z
Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles
G. H. Chan (2008)
10.1021/JP002435E
Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles
T. R. Jensen (2000)
10.1038/NPHOTON.2009.187
Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna
A. Kinkhabwala (2009)
10.1103/REVMODPHYS.57.783
Surface-enhanced spectroscopy
M. Moskovits (1985)
10.1103/PHYSREVLETT.94.017402
Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas.
P. Schuck (2005)
10.1073/pnas.0907459106
Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays
R. Adato (2009)
10.1021/nn2025868
Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
H. Duan (2011)
10.1364/OE.16.009144
Engineering the optical response of plasmonic nanoantennas.
H. Fischer (2008)
10.1116/1.1808712
Fabrication of sub-5 nm gaps between metallic electrodes using conventional lithographic techniques
P. Steinmann (2004)
10.1021/JP908921Y
Antenna Sensing of Surface Phonon Polaritons
F. Neubrech (2010)
10.1088/0957-4484/24/39/395301
Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps.
Olivier Scholder (2013)
10.1021/NL0342287
Dichroic Optical Properties of Extended Nanostructures Fabricated Using Angle-Resolved Nanosphere Lithography
C. Haynes (2003)
10.1021/JP402383H
Low-Cost Infrared Resonant Structures for Surface-Enhanced Infrared Absorption Spectroscopy in the Fingerprint Region from 3 to 13 μm
J. M. Hoffmann (2013)
10.1021/nl1016392
Fanoshells: nanoparticles with built-in Fano resonances.
S. Mukherjee (2010)
10.1088/0957-4484/23/12/125302
Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography.
M. Manheller (2012)
10.1021/JP010657M
Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics
C. Haynes (2001)
10.1021/JP013570+
Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing
C. Haynes (2002)
10.1103/PHYSREVB.72.165409
Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles
A. Sundaramurthy (2005)
10.1038/NPHOTON.2008.27
Nanomechanical Control of an Optical Antenna
M. Kahl (2007)
10.1116/1.579726
Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces
John C. Hulteen (1995)
10.1016/J.CPLETT.2007.12.042
Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates
J. Kundu (2008)
10.1021/nn302429g
Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
F. Neubrech (2012)
10.1021/nl1012085
Vertically oriented sub-10-nm plasmonic nanogap arrays.
H. Im (2010)
10.1103/PHYSREVLETT.101.157403
Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection.
F. Neubrech (2008)
10.1021/nn203177s
Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography.
J. Zhao (2011)



This paper is referenced by
10.1364/OE.26.029363
Implementation of plasmonic band structure to understand polariton hybridization within metamaterials.
N. Sharac (2018)
10.1021/acsphotonics.8b00847
Quantifying the Limits of Detection of Surface-Enhanced Infrared Spectroscopy with Grating Order-Coupled Nanogap Antennas
Aurelian John-Herpin (2018)
10.1021/acssensors.7b00891
Surface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing.
Xinyuan Chong (2018)
10.1021/ACSPHOTONICS.6B00812
Chemical Identification of Individual Fine Dust Particles with Resonant Plasmonic Enhancement of Nanoslits in the Infrared
J. Vogt (2017)
10.1002/ADOM.201600559
High‐Q Plasmonic Fano Resonance for Multiband Surface‐Enhanced Infrared Absorption of Molecular Vibrational Sensing
Govind Dayal (2017)
10.1002/ADOM.201700091
Protein‐Functionalized Indium‐Tin Oxide Nanoantenna Arrays for Selective Infrared Biosensing
Kai Chen (2017)
10.1021/ACSPHOTONICS.5B00390
Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods
C. Huck (2015)
10.1021/ACSPHOTONICS.5B00399
Incident Angle-Tuning of Infrared Antenna Array Resonances for Molecular Sensing
T. Mass (2015)
10.1021/acs.nanolett.7b02736
Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy.
Liangliang Dong (2017)
10.1002/ADOM.201800613
Invisible Thin‐Film Patterns with Strong Infrared Emission as an Optical Security Feature
Gokhan Bakan (2018)
Strong coupling between phonon-polaritons and plasmonic nanorods
Ochen (2016)
10.1117/12.2501291
Al nanoantennas for plasmon-enhanced infrared spectroscopy
Kai Chen (2018)
10.1063/1.4945354
Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure
Chatdanai Lumdee (2016)
10.1364/OE.27.010524
Tailoring grating strip widths for optimizing infrared absorption signals of an adsorbed molecular monolayer.
T. Mass (2019)
10.1007/s11468-016-0263-9
Design Optimisation of Plasmonic Metasurfaces for Mid-Infrared High-Sensitivity Chemical Sensing
A. D. Marcellis (2016)
Nanoscale Control of Gap-plasmon Enhanced Optical Processes
Chatdanai Lumdee (2015)
10.1021/acs.chemrev.6b00743
Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas.
F. Neubrech (2017)
10.1007/s13204-019-01043-z
Plasmon-induced anti-transparency modes in metasurface
N. Muhammad (2019)
10.1016/j.aca.2017.07.045
Surface enhanced infrared absorption spectroscopy based on gold nanostars and spherical nanoparticles.
O. Bibikova (2017)
10.3390/mi10040241
Indium–Tin–Oxide Nanostructures for Plasmon-Enhanced Infrared Spectroscopy: A Numerical Study
Z. Li (2019)
10.1364/OE.24.025528
Strong coupling between phonon-polaritons and plasmonic nanorods.
C. Huck (2016)
10.1515/nanoph-2017-0005
Periodic array-based substrates for surface-enhanced infrared spectroscopy
T. Mayerhöfer (2017)
10.1364/OE.23.025487
Extreme ultraviolet proximity lithography for fast, flexible and parallel fabrication of infrared antennas.
Georg Kunkemöller (2015)
10.1038/srep44069
Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching
Kai Chen (2017)
Applications of high-aspect-ratio gold nanowires fabricated by nanoskiving
Z. Zhao (2016)
Noble metals sputter deposition on water-soluble polymers
M. Schwartzkopf (2018)
10.1088/1361-6463/ab77db
Recent progress in nanoplasmonics-based integrated optical micro/nano-systems
Bowei Dong (2020)
10.1515/nanoph-2018-0105
Glancing angle deposition meets colloidal lithography: a new evolution in the design of nanostructures
B. Ai (2018)
10.1039/c9nr04032c
Antenna array-enhanced attenuated total reflection IR analysis in an aqueous solution.
J. Li (2019)
10.1021/nl503126s
Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities.
Xiaoshu Chen (2015)
Semantic Scholar Logo Some data provided by SemanticScholar