Online citations, reference lists, and bibliographies.
← Back to Search

Evolution Of Titanium Dioxide One-dimensional Nanostructures From Surface-reaction-limited Pulsed Chemical Vapor Deposition

X. Wang, J. Shi
Published 2013 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
This paper reviews the recent development of surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique for the growth of TiO 2 one-dimensional nanostructures. SPCVD uses separated TiCl 4 and H 2 O precursor pulses, and the anisotropic growth of TiO 2 crystals is attributed to the combined effects of surface recombination and HCl restructuring at high temperature during elongated purging time. Therefore, the crystal growth is effectively decoupled from precursor vapor concentration, which allows uniform growth of TiO 2 nanorods (NRs) inside highly confined spaces. The phase of TiO 2 NRs can be tuned from anatase to rutile by raising the deposition temperature. Au catalysts are able to enhance the growth rate and led to bifurcated nanowire (NW) morphology. A high density three-dimensional (3D) NW architecture was created by SPCVD growing TiO 2 NRs inside dense Si NW forests. Such 3D structures offer both large surface area and excellent charge transport property, which substantially improved the efficiency of photoelectrochemical devices.
This paper references
10.1016/J.JSSC.2005.04.025
Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments
R. Yoshida (2005)
10.1021/nl201823u
Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes.
J. Shi (2011)
10.1021/CG200140K
Growth of Rutile Titanium Dioxide Nanowires by Pulsed Chemical Vapor Deposition
J. Shi (2011)
10.1021/JP0648644
ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells.
M. Law (2006)
10.1016/J.RSER.2005.01.009
A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production
Meng Ni (2007)
10.1016/S0009-2614(02)01499-9
Hydrothermal synthesis and photoluminescence of TiO2 nanowires
Y. Zhang (2002)
10.1002/ADMA.200502696
Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications
D. Bavykin (2006)
10.1038/26936
Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies
U. Bach (1998)
10.1021/nl073163v
Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications.
Eric Formo (2008)
10.1021/JA048820P
Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions.
E. Hosono (2004)
10.1021/JP055824N
Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film.
Jinting Jiu (2006)
10.1021/nl103702j
Growth of titanium dioxide nanorods in 3D-confined spaces.
J. Shi (2011)
10.1002/ADMA.200400795
Lithium‐Ion Intercalation into TiO2‐B Nanowires
A. Armstrong (2005)
10.1002/CHIN.200507003
Predicting the Energetics, Phase Stability, and Morphology Evolution of Faceted and Spherical Anatase Nanocrystals
A. Barnard (2005)
10.1016/S0022-0248(03)01339-3
Growth of TiO2 nanorods by metalorganic chemical vapor deposition
S. Pradhan (2003)
10.1021/JP077593L
ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells
Lori E. Greene (2007)
10.1021/nl8032763
High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity.
Y. Hwang (2009)
10.1016/J.JPHOTOCHEM.2004.04.037
A nano-modified Si/TiO2 composite electrode for efficient solar water splitting
S. Takabayashi (2004)
10.1021/ja8078972
Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells.
B. Liu (2009)
10.1021/CS200392M
Effect of Reactor Materials on the Properties of Titanium Oxide Nanotubes
A. Danon (2012)
10.1364/AOEE.2013.ASU2A.2
Highly Efficient Dye-Sensitized Solar Cells
L. Han (2013)
10.1021/NL025541W
ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES
Z. Miao (2002)
10.1021/nl802096a
Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications.
Xinjian Feng (2008)
10.1143/APEX.4.065002
Patterned Growth of TiO2 Nanowires on Titanium Substrates
Jong-Yoon Ha (2011)
10.1021/am900316f
Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays.
J. Liu (2009)
10.1126/SCIENCE.1075035
Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2
S.U.M. Khan (2002)
10.1021/JP1007335
TiO2 nanowire growth driven by phosphorus-doped nanocatalysis
M. Kim (2010)
10.1038/nature06964
Anatase TiO2 single crystals with a large percentage of reactive facets
H. Yang (2008)
10.1016/J.JCRYSGRO.2005.04.018
Thermal evaporation growth and the luminescence property of TiO2 nanowires
J. Wu (2005)
10.1021/NL050355M
Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry.
A. Barnard (2005)
10.1155/2010/585621
Fabrication of Dye-Sensitized Solar Cells with a 3D Nanostructured Electrode
G. Chen (2010)
10.1063/1.2185247
Highly sensitive gas sensor based on integrated titania nanosponge arrays
A. S. Zuruzi (2006)
10.1021/cr900056b
Atomic layer deposition: an overview.
S. George (2010)
10.1088/0957-4484/18/44/445609
A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures
S. S. Amin (2007)
10.1016/0040-6090(93)90172-L
Growth of titanium dioxide thin films by atomic layer epitaxy
M. Ritala (1993)



This paper is referenced by
10.1021/nl403566u
Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition.
J. Shi (2013)
Etude, fabrication et caractérisation de nanostructures catalytiques de type ZnO/SnO2 intégrées à des membranes modèles pour la dépollution de l'eau
V. Rogé (2015)
10.1016/J.CERAMINT.2014.01.032
In vitro chondrocyte interactions with TiO2 nanofibers grown on Ti-6Al-4V substrate by oxidation
A. W. Tan (2014)
10.2147/IJN.S72659
Proliferation and stemness preservation of human adipose-derived stem cells by surface-modified in situ TiO2 nanofibrous surfaces
A. H. Tan (2014)
10.1038/srep21828
Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces
A. H. Tan (2016)
10.1021/cr400621z
Titanium dioxide crystals with tailored facets.
G. Liu (2014)
10.1016/J.JMST.2014.12.010
Fabrication and Growth Mechanism of Single-crystalline Rutile TiO2 Nanowires by Liquid-phase Deposition Process in a Porous Alumina Template
A. S. Attar (2015)
10.4028/www.scientific.net/AMM.575.219
Surface Properties and Cell Response of Bioactive Thermally Grown TiO2 Nanofibers
A. W. Tan (2014)
steogenic potential of in situ TiO 2 nanowire surfaces formed y thermal oxidation of titanium alloy substrate
W. Tana (2014)
10.1016/j.apsusc.2020.146298
Engineering black titanium dioxide by femtosecond laser filament
Y. Su (2020)
10.1039/C5RA16156H
Tailoring the optical properties of ZnO nano-layers and their effect on in vitro biocompatibility
V. Rogé (2015)
10.1016/J.APSUSC.2014.08.160
Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate
A. W. Tan (2014)
10.1088/0957-4484/26/38/382001
Can oriented-attachment be an efficient growth mechanism for the synthesis of 1D nanocrystals via atomic layer deposition?
Kechun Wen (2015)
10.1002/9781119951438.EIBC2335
Titanium Dioxide Nanomaterials
Xiaodong Yan (2015)
10.1007/s10853-013-7659-0
Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: a review
A. W. Tan (2013)
10.1179/1432891714Z.000000000960
Synthesis of bioactive titania nanofibrous structures via oxidation
A. Tan (2013)
Proliferation and stemness preservation of human adipose-derived stem cells by surface-modified in situ TiO2 nanofibrous surfaces
Belinda Murphy (2014)
10.1557/JMR.2014.227
Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation
T. Xia (2014)
10.1039/c4nr04537h
Where is the required lattice match in horizontal growth of nanowires?
B. Nikoobakht (2014)
SURFACE MODIFICATION OF TITANIUM AND ITS ALLOYS IN ORTHOPEDIC APPLICATIONS TAN AI WEN THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY FACULTY OF ENGINEERING UNIVERSITY OF MALAYA
A. W. Tan (2015)
Semantic Scholar Logo Some data provided by SemanticScholar