Online citations, reference lists, and bibliographies.
← Back to Search

Gold Nanoparticle Functionalized Mesoporous Silica-Chitosan As Efficient And Recyclable Catalyst For The Green One-Pot Synthesis Of 4H-pyran Derivatives In Aqueous Medium

Razieh Azimi, Zahra Lasemi, Ayemeh Bagheri Hashkavayi

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Gold nanoparticle functionalized mesoporous silica-chitosan (Au NPs/silica-chitosan) as an environmentally benign and heterogeneous nanocatalyst was prepared and its properties were characterized using field emission scanning electron microscopy (FE-SEM) and fourier transform infrared (FT-IR). The catalytic activity of Au NPs/silica-chitosan was studied in the synthesis of biologically important 4H-pyran derivatives. In these reactions, efficient and green syntheses of 4H-pyrans were carried out using isatins or aldehydes, active methylene compounds, and 1,3-dicarbonyl compounds in the presence of a catalytic amount of Au NPs/silica-chitosan in water in excellent yields. Au NPs/silica-chitosan can be recovered easily and reused without any significant loss of the catalytic activity. 4H-pyran derivatives were synthesized using Au NPs/silica-chitosan as catalyst in three component reaction of isatins/aldehydes, active methylene, and 1,3-dicarbonyl compounds in water. Au NPs/Silica-Chitosan was prepared by reaction of aqueous solution of HAuCl4 (1 wt.%) and solution chitosan in deionized water and acetic acid with tetraethyl ortho silicate (TEOS) at 100ºC for 24 h. Gold nanoparticle functionalized mesoporous silica-chitosan was prepared and its catalytic activity was investigated for forming 4H-pyran derivatives. In this study, active methylene and 1,3-dicarbonyl compounds reacted with various isatins and aldehydes which afforded the corresponding spirooxindoles with 88-98% yields. This method includes the environmentally friendly reaction conditions, short reaction time, simple work-up, excellent yield, broad scope of usable substrates, recovery and reusability of heterogeneous catalyst.