Online citations, reference lists, and bibliographies.
← Back to Search

The Use Of Spectral-Domain Optical Coherence Tomography To Detect Glaucoma Progression

Ricardo Y Abe, C. P. Gracitelli, F. Medeiros
Published 2015 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Detection of progression and measurement of rates of change is at the core of glaucoma management, and the use of Spectral Domain Optical Coherence Tomography (SD-OCT) has significantly improved our ability to evaluate change in the disease. In this review, we critically assess the existing literature on the use of SD-OCT for detecting glaucoma progression and estimating rates of change. We discuss aspects related to the reproducibility of measurements, their accuracy to detect longitudinal change over time, and the effect of aging on the ability to detect progression. In addition, we discuss recent studies evaluating the use of combined structure and function approaches to improve detection of glaucoma progression.
This paper references
10.1016/j.preteyeres.2007.08.001
A framework for comparing structural and functional measures of glaucomatous damage
D. Hood (2007)
10.1167/iovs.11-8644
Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments.
L. Pierro (2012)
coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head
M Yoshikawa (2008)
10.2307/2531561
The design and analysis of clinical experiments
J. Fleiss (1986)
10.1016/j.ajo.2013.04.015
Estimated retinal ganglion cell counts in glaucomatous eyes with localized retinal nerve fiber layer defects.
A. Tatham (2013)
10.1136/bjophthalmol-2013-304326
OCT for glaucoma diagnosis, screening and detection of glaucoma progression
I. Bussel (2013)
10.1016/j.ajo.2008.09.005
Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography.
M. Menke (2009)
10.3109/02713683.2012.742913
Progression of Retinal Nerve Fiber Layer Thinning in Glaucoma Assessed by Cirrus Optical Coherence Tomography-guided Progression Analysis
J. Na (2013)
10.1016/j.ophtha.2009.08.039
Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph.
A. Garas (2010)
10.5301/EJO.2010.5469
Intrasession, Intersession, and Interexaminer Variabilities of Retinal Nerve Fiber Layer Measurements with Spectral-Domain OCT
F. Cremasco (2011)
10.1016/j.ophtha.2011.10.010
Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss.
C. Leung (2012)
10.1016/S0002-9394(03)00480-X
Clinical agreement among glaucoma experts in the detection of glaucomatous changes of the optic disk using simultaneous stereoscopic photographs.
A. Azuara-Blanco (2003)
10.1001/ARCHOPHT.1995.01100030081025
Optical coherence tomography of the human retina.
M. Hee (1995)
10.1364/OE.15.006121
In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography.
Y. Yasuno (2007)
World glaucoma association consensus meeting: progression of glaucoma
RN Weinreb (2011)
10.1016/j.ophtha.2012.03.044
Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression.
C. Leung (2012)
10.1016/j.ajo.2010.03.015
Macular thickness interoperator and intraoperator reproducibility in healthy eyes using 7 optical coherence tomography instruments.
L. Pierro (2010)
10.1167/iovs.08-2127
Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.
V. Srinivasan (2008)
10.1001/jama.2014.3192
The pathophysiology and treatment of glaucoma: a review.
R. Weinreb (2014)
10.2307/2988144
Statistical Methods for Rates and Proportions
Thomas Marshall (1976)
10.4103/0301-4738.73694
The role of standard automated perimetry and newer functional methods for glaucoma diagnosis and follow-up
L. M. Alencar (2011)
10.1167/iovs.11-7962
Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma.
Jean-Claude Mwanza (2011)
10.1016/j.ajo.2008.12.032
Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements.
A. O. González-García (2009)
10.1016/j.ajo.2008.07.023
Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients.
Henry D. Jampel (2009)
Diagnostic Ability of Fourier-Domain vs Time-Domain Optical Coherence Tomography for Glaucoma Detection
J. D. Cascajosa (2010)
10.1007/978-3-540-75387-2_11
Optical Coherence Tomography
E. Swanson (2001)
10.2307/1402915
Statistical methods for rates and proportions
J. Fleiss (1981)
10.1136/bjophthalmol-2012-302242
Reproducibility of macular ganglion cell–inner plexiform layer thickness measurement with cirrus HD-OCT in normal, hypertensive and glaucomatous eyes
M. Francoz (2013)
10.1016/j.ophtha.2009.05.025
Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography.
O. Tan (2009)
deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography
VJ Srinivasan (2007)
10.1016/j.ajo.2013.11.008
Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging.
H. Park (2014)
10.1016/j.ophtha.2014.01.017
Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes.
A. Miki (2014)
10.1016/j.ophtha.2010.11.029
Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma.
M. T. Leite (2011)
10.3341/kjo.2012.26.5.369
A Formula to Predict Spectral Domain Optical Coherence Tomography (OCT) Retinal Nerve Fiber Layer Measurements Based on Time Domain OCT Measurements
K. H. Lee (2012)
10.1016/j.ajo.2010.01.010
Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry.
F. Medeiros (2010)
10.1016/J.AJO.2005.04.044
Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders.
R. Parrish (2005)
10.1016/j.preteyeres.2006.10.002
Recent developments in optical coherence tomography for imaging the retina
M. V. Velthoven (2007)
10.1016/j.ajo.2014.02.008
Evaluation of retinal and choroidal thickness by swept-source optical coherence tomography: repeatability and assessment of artifacts.
K. Mansouri (2014)
10.1097/IJG.0b013e31826a9707
Detection of Early Glaucomatous Progression With Different Parameters of the RTVue Optical Coherence Tomograph
F. Naghizadeh (2014)
Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography
M Wojtkowski (2005)
10.1016/j.ophtha.2013.07.021
Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression.
C. Leung (2013)
10.1097/IJG.0b013e3181d787b6
Diagnostic Power of Optic Disc Morphology, Peripapillary Retinal Nerve Fiber Layer Thickness, and Macular Inner Retinal Layer Thickness in Glaucoma Diagnosis With Fourier-domain Optical Coherence Tomography
Jehn-Yu Huang (2011)
10.1007/s00417-011-1811-9
Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT
M. Töteberg-Harms (2011)
10.1167/iovs.09-3715
Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements.
F. Medeiros (2009)
10.1097/IJG.0b013e31829521db
Reproducibility of Spectral-Domain Optical Coherence Tomography Measurements in Adult and Pediatric Glaucoma
F. Ghasia (2015)
10.1007/s10384-012-0181-0
Test–retest variability in structural parameters measured with glaucoma imaging devices
M. Araie (2012)
10.1167/iovs.13-11897
Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography.
Munemitsu Yoshikawa (2014)
10.1167/iovs.12-11301
Predicting progression in glaucoma suspects with longitudinal estimates of retinal ganglion cell counts.
Daniel Meira-Freitas (2013)
10.1097/ICU.0000000000000024
Diagnosing glaucoma progression with optical coherence tomography.
C. Leung (2014)
10.1167/iovs.09-3468
Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis.
C. Leung (2010)
10.1016/j.ophtha.2012.09.039
Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma.
F. Medeiros (2013)
coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head
M Yoshikawa (2008)
10.1136/bjophthalmol-2012-302841
Challenges in estimating the accuracy of imaging-based detection methods for glaucomatous progression
K. A. Vermeer (2013)
10.1097/IJG.0b013e31815c3aeb
Effect of Improper Scan Alignment on Retinal Nerve Fiber Layer Thickness Measurements Using Stratus Optical Coherence Tomograph
G. Vizzeri (2008)
Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma
S Miglior (2002)
10.3109/08820539809056053
Optical coherence tomography.
G. Ripandelli (1998)
10.1001/ARCHOPHT.123.4.464
Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma.
G. Wollstein (2005)
10.1001/archophthalmol.2009.296
Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography.
S. B. Park (2009)
10.1016/j.ophtha.2008.12.045
Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography.
K. Sung (2009)
10.1001/jamaophthalmol.2013.2602
Association between rates of binocular visual field loss and vision-related quality of life in patients with glaucoma.
Renato Lisboa (2013)
10.1016/j.ajo.2011.11.015
Combining structural and functional measurements to improve estimates of rates of glaucomatous progression.
F. Medeiros (2012)
Comparison of longterm variability of retinal nerve fiber layer measurements made with the RTVue OCT and scanning laser polarimetry
F Naghizadeh (2012)
Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus 88
KR Sung (2015)
10.1016/j.ophtha.2012.12.014
Detection of glaucomatous progression by spectral-domain optical coherence tomography.
J. Na (2013)
10.1001/ARCHOPHT.123.12.1715
Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging.
T. Chen (2005)
10.1016/j.ophtha.2011.08.022
Progression detection capability of macular thickness in advanced glaucomatous eyes.
K. Sung (2012)
10.1016/j.ajo.2012.04.022
Estimating the rate of retinal ganglion cell loss in glaucoma.
F. Medeiros (2012)
10.1016/J.OPHTHA.2004.11.030
Results of the European Glaucoma Prevention Study.
S. Miglior (2005)
10.1007/s10384-013-0276-2
Discrepancy between optic disc and nerve fiber layer assessment and optical coherence tomography in detecting glaucomatous progression
Jong Rak Lee (2013)
10.1016/j.ophtha.2010.01.031
Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis.
H. Rao (2010)
10.1016/j.ophtha.2008.12.062
The Relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma.
F. Medeiros (2009)
10.1167/iovs.12-9786
Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography.
J. Wessel (2013)
10.1016/J.OPHTHA.2005.05.023
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
M. Wojtkowski (2005)
tomography of the human retina
TC Chen (1995)
10.1016/j.ophtha.2007.11.027
Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography.
C. Y. Cheung (2008)
10.1167/iovs.11-9369
Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography.
J. Na (2012)
10.1167/iovs.10-5222
Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes.
Jean-Claude Mwanza (2010)
10.1097/IJG.0b013e3180391a3c
Long-term Variability of GDx VCC Retinal Nerve Fiber Layer Thickness Measurements
F. Medeiros (2007)
10.1001/ARCHOPHT.120.6.701
The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma.
M. Kass (2002)
10.1136/bjo.2008.150698
Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness
G. Vizzeri (2009)
10.5301/ejo.5000178
Comparison of Long-Term Variability of Retinal Nerve Fiber Layer Measurements Made with the RTVue OCT and Scanning Laser Polarimetry
F. Naghizadeh (2013)
10.1007/s10384-013-0254-8
Evaluation of relationship between retinal nerve fiber layer thickness progression and visual field progression in patients with glaucoma
K. Tenkumo (2013)
10.1097/ICU.0b013e32835d9e27
Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography
D. Grewal (2013)
10.1016/j.ophtha.2008.12.032
Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography.
O'Rese J Knight (2009)
10.1001/archophthalmol.2009.276
Prediction of functional loss in glaucoma from progressive optic disc damage.
F. Medeiros (2009)
10.1590/S0042-96862004001100019
Glaucoma is second leading cause of blindness globally.
S. Kingman (2004)
dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography
AO González-García (2005)



This paper is referenced by
10.1038/s41433-019-0484-1
Relationship between intraocular pressure and retinal nerve fibre thickness loss in a monkey model of chronic ocular hypertension
S. Tu (2019)
10.1586/17469899.2016.1158646
Challenges of assessing the optic nerve in glaucoma
Angeliki Salonikiou (2016)
10.1016/j.ajo.2019.10.034
Comparison of Short- And Long-Term Variability On Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma.
C. N. Urata (2019)
10.17077/ETD.GJT5W9AU
Computational methods to model disease and genetic effects on optic nerve head structure
Mark A. Christopher (2015)
10.18240/ijo.2017.06.21
Critical pathway for primary open angle glaucoma diagnosis.
Alejandro R Allocco (2017)
10.1097/IJG.0000000000001558
Magnetic Resonance Imaging for Glaucoma Evaluation
C. P. Gracitelli (2020)
10.1016/j.survophthal.2016.03.006
Management of advanced glaucoma: Characterization and monitoring.
C. G. De Moraes (2016)
10.1159/000500980
Comparison of Fundus Biomicroscopy Examination of the Optic Nerve Head with and without Mydriasis
Daniel Colicchio (2019)
10.18240/ijo.2017.06.23
Parameters of ocular fundus on spectral-domain optical coherence tomography for glaucoma diagnosis.
Y. Tao (2017)
10.1016/j.ophtha.2016.07.006
Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography.
Alberto Diniz-Filho (2016)
10.2174/1874364101509010056
Editorial New Advances in Diagnosis and Management of Glaucoma
M. Reza Razeghinejad (2015)
10.1167/TVST.8.3.8
Contrast-to-Noise Ratios for Assessing the Detection of Progression in the Various Stages of Glaucoma
J. E. A. Majoor (2019)
10.2147/OPTH.S251333
Individualized Significance of 24-Hour Intraocular Pressure Curves for Therapeutic Decisions in Primary Chronic Open-Angle Glaucoma Patients
Mael Lever (2020)
10.2174/1874364101509010068
Spectral-Domain Optical Coherence Tomography for Glaucoma Diagnosis
C. P. Gracitelli (2015)
10.17116/OFTALMA2019135021130
[Applications of optical coherence tomography in glaucoma].
V. A. Machekhin (2019)
10.1080/17469899.2016.1180246
What rates of glaucoma progression are clinically significant?
L. Saunders (2016)
10.4172/2155-9570.1000517
The Assessment of Pupil Cycle Time in Patients with Glaucoma
O. Karti (2016)
10.1097/IJG.0000000000000406
Identification of the Most Accurate Spectral-domain Optical Coherence Tomography Parameters in Eyes With Early High-Tension and Low-Tension Glaucoma
C. P. Gracitelli (2016)
Semantic Scholar Logo Some data provided by SemanticScholar