Online citations, reference lists, and bibliographies.
← Back to Search

Nanotechnology In Insulin Delivery For Management Of Diabetes

Fatemah Bahman, Khaled Greish, Sebastien Taurin

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Diabetes is a group of diseases characterized by hyperglycemia and originating from the deficiency or resistance to insulin, or both. Ultimately, the most effective treatment for patients with diabetes involves subcutaneous injections of insulin. However, this route of administration is often painful and inconvenient, as most patients will have to selfadminister it at least twice a day for the rest of their lives. Also, infection, insulin precipitation, and either lipoatrophy or lipohypertrophy are frequently observed at the site of injection. To date, several alternative routes of insulin administration have been explored, including nasal, pulmonary and oral. Although the delivery of insulin is an ideal route for diabetic patients, several limitations have to be overcome such as the rapid degradation of insulin in gastric fluid and low oral bioavailability. Numerous strategies have been carried out to improve these limited parameters such as the use of enzyme inhibitors, absorption enhancers, mucoadhesive polymers and chemical modification for receptor-mediated absorption. Also, insulin-loaded nanocarriers bypass several physiological barriers. This current review focuses on the various barriers existing in the delivery of insulin through the oral route and the strategies undertaken so far to overcome those obstacles using nanocarriers as a potential vehicle of insulin.