Online citations, reference lists, and bibliographies.
← Back to Search

Complementary Metal Oxide Semiconductor-compatible Silicon Nanowire Biofield-effect Transistors As Affinity Biosensors.

X. Duan, N. Rajan, M. Izadi, M. Reed
Published 2013 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Affinity biosensors use biorecognition elements and transducers to convert a biochemical event into a recordable signal. They provides the molecule binding information, which includes the dynamics of biomolecular association and dissociation, and the equilibrium association constant. Complementary metal oxide semiconductor-compatible silicon (Si) nanowires configured as a field-effect transistor (NW FET) have shown significant advantages for real-time, label-free and highly sensitive detection of a wide range of biomolecules. Most research has focused on reducing the detection limit of Si-NW FETs but has provided less information about the real binding parameters of the biomolecular interactions. Recently, Si-NW FETs have been demonstrated as affinity biosensors to quantify biomolecular binding affinities and kinetics. They open new applications for NW FETs in the nanomedicine field and will bring such sensor technology a step closer to commercial point-of-care applications. This article summarizes the recent advances in bioaffinity measurement using Si-NW FETs, with an emphasis on the different approaches used to address the issues of sensor calibration, regeneration, binding kinetic measurements, limit of detection, sensor surface modification, biomolecule charge screening, reference electrode integration and nonspecific molecular binding.
This paper references
10.1021/JA065923U
Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution.
Yuri L Bunimovich (2006)
10.1038/nchem.1537
Drug discovery: nature's pieces.
Brian K. Shoichet (2013)
10.3390/S80314000
Electrochemical Biosensors - Sensor Principles and Architectures
Dorothee Grieshaber (2008)
10.2217/17435889.1.1.51
Nanowire sensors for medicine and the life sciences.
Fernando Patolsky (2006)
10.1016/j.bios.2011.07.025
Multiplexed SOI BioFETs.
A. Vacic (2011)
10.1039/c0nr00442a
Quantifying signal changes in nano-wire based biosensors.
L. De Vico (2011)
10.1016/S0956-5663(01)00124-5
Principles and applications of thermal biosensors.
K. Ramanathan (2001)
10.1016/0956-5663(91)85009-L
A critical evaluation of direct electrical protein detection methods.
P. Bergveld (1991)
10.1042/BJ3390607
Kinetic basis for selective inhibition of cyclo-oxygenases.
J. Gierse (1999)
10.1038/nnano.2011.44
Comparative advantages of mechanical biosensors.
J. Arlett (2011)
10.1002/ADMA.200700665
Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules.
S. Kim (2007)
10.1021/ac2023316
Contacting versus insulated gate electrode for Si nanoribbon field-effect sensors operating in electrolyte.
S. Chen (2011)
10.1021/nl302434w
Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices.
R. Elnathan (2012)
10.1021/nl2042276
Thin film polycrystalline silicon nanowire biosensors.
M. A. Hakim (2012)
10.1038/nature05498
Label-free immunodetection with CMOS-compatible semiconducting nanowires
E. Stern (2007)
10.1021/AC069419J
Nanowire-based biosensors.
Fernando Patolsky (2006)
10.1002/wnan.82
Nanodevices in diagnostics.
Ye Hu (2011)
10.1021/nn2035796
Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems.
Hsiao-Kang Chang (2011)
10.1016/0167-4838(95)00006-G
The Temkin isotherm describes heterogeneous protein adsorption.
R. D. Johnson (1995)
10.1021/cr068107d
Surface plasmon resonance sensors for detection of chemical and biological species.
J. Homola (2008)
10.1002/smll.200902132
Label-free attomolar detection of proteins using integrated nanoelectronic and electrokinetic devices.
Jian-Ru Gong (2010)
10.1021/nl202303y
Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids.
A. Gao (2011)
10.1007/S00216-003-2101-0
Present and future of surface plasmon resonance biosensors
J. Homola (2003)
10.1021/nl400645j
Improving nanowire sensing capability by electrical field alignment of surface probing molecules.
C. Chu (2013)
10.1021/nn9011384
A calibration method for nanowire biosensors to suppress device-to-device variation.
F. Ishikawa (2009)
10.2116/ANALSCI.20.1113
Recent developments, characteristics, and potential applications of electrochemical biosensors.
M. Mehrvar (2004)
10.1063/1.2775090
Carbon nanotube biosensors: The critical role of the reference electrode
E. Minot (2007)
10.2174/1573413054065330
Bionanotechnology: The Science of Revealing Life with Nanostructures
Patrick Englebienne and Anne Van Hoonacker (2005)
10.1073/PNAS.0406159101
Electrical detection of single viruses.
Fernando Patolsky (2004)
10.1113/jphysiol.1910.sp001366
A new mathematical treatment of changes of ionic concentration in muscle and nerve under the action of electric currents, with a theory as to their mode of excitation
A. V. Hill (1910)
10.1007/S00216-003-2111-Y
Label-free screening of bio-molecular interactions
M. Cooper (2003)
10.1039/c1an15568g
Silicon nanowire ion sensitive field effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics.
S. Kim (2011)
10.1021/nl080094r
Silicon nanoribbons for electrical detection of biomolecules.
Niklas Elfström (2008)
10.1002/ELAN.200403070
Thirty Years of CHEMFETs – A Personal View
J. Janata (2004)
10.3390/s100301679
Microfabricated Reference Electrodes and their Biosensing Applications
M. W. Shinwari (2010)
10.1038/nnano.2009.353
Label-free biomarker detection from whole blood
E. Stern (2010)
10.1021/NL034853B
Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors
J. H. and (2004)
10.1002/SMLL.200500214
Nanomaterial-based amplified transduction of biomolecular interactions.
J. Wang (2005)
10.1007/s10544-010-9497-z
High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing
B. Reddy (2011)
10.1109/TBME.1972.324137
Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology.
P. Bergveld (1972)
10.1016/S0009-8981(03)00241-9
Biosensors in clinical chemistry.
P. D'Orazio (2003)
10.1021/NL034139U
Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors
K. Besteman (2003)
10.1038/nrd1129
Implications of protein flexibility for drug discovery
S. Teague (2003)
10.1039/c1lc20492k
Piezoelectric microelectromechanical resonant sensors for chemical and biological detection.
W. Pang (2012)
10.1073/PNAS.0406368102
Label-free detection of small-molecule-protein interactions by using nanowire nanosensors.
W. U. Wang (2005)
10.1073/pnas.0604471103
Monitoring of heparin and its low-molecular-weight analogs by silicon field effect
Nebojsa M Milović (2006)
10.1038/nature01996
High-performance thin-film transistors using semiconductor nanowires and nanoribbons
X. Duan (2003)
10.1088/0957-4484/20/23/235501
The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors.
K. Kim (2009)
10.1021/la301555r
True reference nanosensor realized with silicon nanowires.
A. Tarasov (2012)
10.1007/s00216-009-2643-x
Nanomaterials in fluorescence-based biosensing
W. Zhong (2009)
10.1021/ac301894k
Quantification of protein-ligand dissociation kinetics in heterogeneous affinity assays.
A. Jacob (2012)
10.1016/S0022-1759(96)00199-8
Competitive flow injection enzyme immunoassay for steroids using a post-column reaction technique.
K. Kronkvist (1997)
10.1038/nchem.1367
An ultrasensitive universal detector based on neutralizer displacement.
Jagotamoy Das (2012)
10.1143/JJAP.50.04DL05
Fabrication of High-Sensitivity Polycrystalline Silicon Nanowire Field-Effect Transistor pH Sensor Using Conventional Complementary Metal–Oxide–Semiconductor Technology
H. Chen (2011)
10.1016/S0006-3495(98)77549-6
Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data.
D. Myszka (1998)
10.1021/nl072593i
Screening-limited response of nanobiosensors.
P. Nair (2008)
10.1016/J.BIOS.2004.12.003
Biosensors for real-time in vivo measurements.
G. S. Wilson (2005)
10.1016/S0959-440X(00)00248-7
Direct measurement of protein binding energetics by isothermal titration calorimetry.
S. Leavitt (2001)
10.1002/1521-3773(20001117)39:22<4004::AID-ANIE4004>3.0.CO;2-2
Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors?
Janshoff (2000)
10.1038/nnano.2012.82
Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors.
X. Duan (2012)
10.1146/ANNUREV.BIOENG.7.011205.135108
Blood-on-a-chip.
M. Toner (2005)
10.3390/s100807323
Small Molecule Immunosensing Using Surface Plasmon Resonance
J. Mitchell (2010)
10.1007/S00216-004-2694-Y
Cantilever-based biosensors
C. Ziegler (2004)
10.1039/c1cc11353d
Ultrasensitive protein detection using an aptamer-functionalized single polyaniline nanowire.
Xiliang Luo (2011)
10.1038/nrd838
Optical biosensors in drug discovery
M. Cooper (2002)
10.1021/NL071792Z
Importance of the Debye screening length on nanowire field effect transistor sensors.
E. Stern (2007)
10.1109/TED.2008.2005168
Semiconducting Nanowire Field-Effect Transistor Biomolecular Sensors
E. Stern (2008)
10.1021/NL050298X
Detection limits for nanoscale biosensors.
P. Sheehan (2005)
10.1126/SCIENCE.291.5505.851
Functional nanoscale electronic devices assembled using silicon nanowire building blocks.
Yunlong Cui (2001)
10.1021/nn103056s
Universal parameters for carbon nanotube network-based sensors: can nanotube sensors be reproducible?
B. Lee (2011)
10.1039/c3lc50524c
Modulation of molecular hybridization and charge screening in a carbon nanotube network channel using the electrical pulse method.
Jun-Myung Woo (2013)
10.1038/nbt1388
Making it stick: convection, reaction and diffusion in surface-based biosensors
T. Squires (2008)
10.1021/nn306034f
Regenerative electronic biosensors using supramolecular approaches.
X. Duan (2013)
10.1007/S10404-010-0640-1
Nanotubes-/nanowires-based, microfluidic-integrated transistors for detecting biomolecules
J. N. Tey (2010)
10.1021/BM020116I
Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface.
K. Marx (2003)
10.1021/AC970153D
A displacement flow immunosensor for explosive detection using microcapillaries
U. Narang (1997)
10.1007/s00216-007-1643-y
Aptamers as molecular recognition elements for electrical nanobiosensors
J. Lee (2008)
10.1063/1.2779930
Screening model for nanowire surface-charge sensors in liquid
M. H. Sørensen (2007)
10.1109/TED.2007.909059
Design Considerations of Silicon Nanowire Biosensors
P.R. Nair (2007)
10.1021/ja107088m
In situ antibody detection and charge discrimination using aqueous stable pentacene transistor biosensors.
H. Khan (2011)
10.1586/14737159.6.3.307
Nanotechnology for cancer diagnostics: promises and challenges
P. Grodzinski (2006)
10.1039/B204444G
Recent advances in biologically sensitive field-effect transistors (BioFETs).
M. J. Schöning (2002)
10.1016/0022-1759(92)90029-S
Kinetics of antibody binding at solid-liquid interfaces in flow.
G. Wemhoff (1992)
10.1021/JP071420E
Quantitative Detection of Protein Using a Top-gate Carbon Nanotube Field Effect Transistor
Masuhiro Abe (2007)
10.1016/J.CBPA.2006.01.006
Nanotechnologies for biomolecular detection and medical diagnostics.
M. Cheng (2006)
10.1016/j.bios.2010.07.017
Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives.
Miso Park (2010)
10.1002/PSSA.200983316
Fabrication and application of a microfluidic‐embedded silicon nanowire biosensor chip
Xuan Thang Vu (2010)
10.1016/J.BIOS.2006.01.003
Development of biosensors for cancer clinical testing.
A. Rasooly (2006)
10.1006/ABIO.1998.2872
Determination of binding constants by equilibrium titration with circulating sample in a surface plasmon resonance biosensor.
P. Schuck (1998)
10.1109/TNANO.2008.2006165
Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs
M. Curreli (2008)
10.1002/smll.201000972
Nanowire-based sensors.
N. Ramgir (2010)
10.1016/j.aca.2008.05.022
Sensitive optical biosensors for unlabeled targets: a review.
Xudong Fan (2008)
10.1002/ELAN.200503449
Nanowire‐Based Electrochemical Biosensors
A. Wanekaya (2006)
10.1073/pnas.232276699
Electronic detection of DNA by its intrinsic molecular charge
J. Fritz (2002)



This paper is referenced by
10.1016/j.apsusc.2019.144303
Graphene biosensor as affinity biosensors for biorecognition between Guanine riboswitch and ligand
M. Tian (2020)
10.1088/0957-4484/27/16/165501
Brownian-motion based simulation of stochastic reaction-diffusion systems for affinity based sensors.
G. Tulzer (2016)
10.1109/UKRCON.2017.8100348
Low-noise high-speed Si nanowire field-effect transistors: Recent advances and opportunities in biosensor applications
S. A. Vitusevich (2017)
10.1007/s10825-019-01417-0
Bayesian inversion for nanowire field-effect sensors
Amirreza Khodadadian (2019)
10.1002/advs.201900522
Hybrid Silicon Nanowire Devices and Their Functional Diversity
L. Baraban (2019)
10.1016/J.SNB.2016.12.065
Comparative analysis of static and non-static assays for biochemical sensing using on-chip integrated field effect transistors and solidly mounted resonators
W. Liu (2017)
10.1016/J.SNB.2020.128991
Analysis of interactions between proteins and small-molecule drugs by a biosensor based on a graphene field-effect transistor
Shicai Xu (2021)
10.1109/ACCESS.2015.2422842
Silicon Nanowire Field-Effect Transistors—A Versatile Class of Potentiometric Nanobiosensors
Luye Mu (2015)
10.1002/ADFM.201500002
Functionalized Polyelectrolytes Assembling on Nano-BioFETs for Biosensing Applications
X. Duan (2015)
10.1038/ncomms14902
Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor
Shicai Xu (2017)
10.2217/nnm.15.53
Silicon nanostructures for cancer diagnosis and therapy.
Fei Peng (2015)
10.1016/J.APSUSC.2017.09.113
Ultrasensitive label-free detection of DNA hybridization by sapphire-based graphene field-effect transistor biosensor
Shicai Xu (2018)
10.1039/c7an00455a
Field-effect sensors - from pH sensing to biosensing: sensitivity enhancement using streptavidin-biotin as a model system.
Benjamin M. Lowe (2017)
Semantic Scholar Logo Some data provided by SemanticScholar