Online citations, reference lists, and bibliographies.
← Back to Search

Interscapular Brown Adipose Tissue Recruitment Is Hindered By A Temperature Environment Of 33°C: Uncoupling Protein-1 Underexpression Is Not Associated With Obesity Development In Rats

Gordana Juric-Lekic, Ljiljana Bedrica, Dragutin Loncar

Cite This
Download PDF
Analyze on Scholarcy
Brown adipose tissue (BAT) generates heat due to unique thermogenic UC-mitochondria, an event known as nonshivering thermogenesis. Cold, adrenergic agents, hormones, etc., activate nonshivering thermogenesis, resulting in lipid mobilization, an increase in the mitochondria and mitochondrial cristae, and increased uncoupling protein-1 (UCP1) expression and its incorporation into mitochondrial cristae. BAT precursor cells mature and contribute to BAT growth in a process known as BAT recruitment. For the first time, we herein report the effect of a thermoneutral environment of 33?C on interscapular BAT (IBAT) in rats delivered and raised at 33?C. The control animals were housed at 20?C. Thermoneutral IBAT was atrophic (73 mg vs. 191 mg) but with more adipocyte precursor cells; euthermia (37.6?C) was maintained without nonshivering thermogenesis. Although IBAT was inactive, the thermoneutral animals did not develop obesity, and on the contrary, the thermoneutral environment of 33?C hindered the rats? growth, weight (65 gm vs. 139 gm), volume (67 gm vs.136 gm) and length (12 cm vs. 16 cm). The thermoneutral brown adipocytes were smaller (7234 ?m3 vs. 9198 ?m3) with more lipids (4919 ?m3 vs. 4507 ?m3) and a smaller mitochondrial cristae area (52504 ?m2 vs. 61288 ?m2/adipocyte). Lipoprotein lipase mRNA expression was 11% (vs. 58% in control) and UCP1 mRNA expression was 34% (vs. 93% control). UCP1 immunoelectron microscopic study detected 160 UCP1-gold particles (vs. 700 in control) per UC-mitochondrion; thermoneutral brown adipocytes had 9-fold fewer UCP1-gold particles (0.34x106 vs. 2.99x106 UCP1-gold particles), and thermoneutral UC-mitochondria developed specific intramitochondrial tubular inclusions.