Online citations, reference lists, and bibliographies.
← Back to Search

Microstructure And Mechanical Properties Of Ultrahigh-Strength TRIP-aided Steels

K. Sugimoto, J. Kobayashi, Tomohiko Hojo
Published 2017 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
近年,乗用車の車体軽量化と衝突安全性の向上を可能 とするため,車体構造部材への高強度鋼板や超高強度鋼 板の適用が積極的に進められている。高強度鋼板として は現在,高強度低合金鋼(HSLA鋼)やフェライト-マル テンサイト(ベイナイト)dual-phase(DP)鋼 が主と して適用されているが,1990年代からポリゴナルフェラ イトを母相とし,残留オーステナイト(γ)の変態誘起塑 性(TRansformation-Induced Plasticity;TRIP)を 利用し て成形性を高めた780 MPa級の低C-Si-Mn系低合金TRIP 鋼(TRIP-aided polygonal ferrite steel;TPF鋼)が使用 され始めた。このTPF鋼に少し遅れて780~980 MPa級の Complex Phase(CP)鋼 も開発され,使用され始めてい る。 TPF鋼はDP鋼とともに第1世代先進高強度鋼(First Generation Advanced High Strength Steel)と呼ばれ,主に乗 用車の骨格部材やドア衝撃部材へ適用されている。成形性 をさらに改善するため,1990年後半には第2世代AHSS, 2000年前半には第3世代AHSSの開発研究が現在まで進め られている(Fig.1)。第2世代AHSSとしては双晶誘起塑 性(TWin-Induced Plasticity;TWIP)を利用して50 GPa%以 上の引張強さと全伸びバランス(TS×TEl)を達成した高 Mn-TWIP鋼 が提案されたが,製造工程やコストの問題 から車体への適用は期待されたほどには進んでいない。第 3世代AHSSには,第1世代と第2世代AHSSの中間のTS× レ ビ ュ ー
This paper references
10.1016/0001-6160(59)90170-1
A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels
D. P. Koistinen (1959)
10.1080/14786436608224282
Work hardening of dispersion-hardened crystals
M. Ashby (1966)
10.1007/BF02642042
Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system
F. Lecroisey (1972)
10.1007/BF02647665
Ultrafine-grained microstructures and mechanical properties of alloy steels
R. Miller (1972)
10.5860/choice.46-3269
Fundamentals of fracture mechanics
J. Knott (1973)
10.1007/BF02672301
Kinetics of strain-induced martensitic nucleation
G. Olson (1975)
10.1007/BF02641975
Metallurgical aspects in cold rolled high strength steel sheets
T. Matsuoka (1975)
10.2472/JSMS.25.717
Fe-Ni-C合金のTRIP現象に及ぼす前加工の影響
陽 友田 (1976)
10.1007/BF02658309
The bainite transformation in a silicon steel
H. Bhadeshia (1979)
10.2355/ISIJINTERNATIONAL1966.27.570
Enhancement of Elongation by Retained Austenite in Intercritical Annealed 0.4C-1.5Si-O.8Mn Steel
O. Matsumura (1987)
10.1179/MST.1989.5.5.465
Dependence of strength–ductility characteristics on thermal history in lowcarbon, 5 wt-%Mn steels
T. Furukawa (1989)
10.1007/BF02653923
Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet
H. Chen (1989)
10.1179/MST.1991.7.6.481
Development of fracture toughness of ultrahigh strength low alloy steels for aircraft and aerospace applications
Yoshiyuki Tomita (1991)
10.1007/BF02646127
Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel
K. Sugimoto (1992)
10.2355/ISIJINTERNATIONAL.32.1311
Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels
K. Sugimoto (1992)
10.2355/ISIJINTERNATIONAL.32.1110
Effect of Retained Austenite on Formability of High Strength Sheet Steels
O. Matsumura (1992)
10.2355/ISIJINTERNATIONAL.33.775
Effects of Second Phase Morphology on Retained Austenite Morphology and Tensile Properties in a TRIP-aided Dual-phase Steel Sheet
K. Sugimoto (1993)
10.1179/MST.1994.10.11.964
Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity
T. Furukawa (1994)
10.1007/BF02649049
Formation mechanism of bainitic ferrite in an Fe-2 Pct Si-0.6 Pct C alloy
K. Tsuzaki (1994)
10.2472/JSMS.43.509
Effect of Silicon Additions on Austempered Structure and Mechanical Properties in Ultrahigh Strength Low Alloy Steels.
Yoshiyuki Tomita (1994)
10.2355/ISIJINTERNATIONAL.35.79
The Influence of Bainite on Retained Austenite Characteristics in Si-Mn TRIP Steels
A. Hanzaki (1995)
10.2355/ISIJINTERNATIONAL.35.1407
Warm stretch-formability of TRIP-aided dual-phase sheet steels
K. Sugimoto (1995)
10.1051/JP4:1997558
Martensite and Bainite in Steels : Transformation Mechanism & Mechanical Properties
H. Bhadeshia (1997)
10.1179/MST.1998.14.12.1213
Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels
O. Graessel (1998)
10.2355/TETSUTOHAGANE1955.85.11_856
Fatigue-hardening Behavior of TRIP-aided Bainitic Steels
K. Sugimoto (1999)
10.1016/S0749-6419(00)00015-2
High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application
O. Graessel (2000)
10.2355/ISIJINTERNATIONAL.40.920
Stretch-flangeability of a High-strength TRIP Type Bainitic Sheet Steel
K. Sugimoto (2000)
10.2355/TETSUTOHAGANE1955.86.8_563
Impact Properties of Low Alloy TRIP Steels
S. Song (2000)
10.2355/ISIJINTERNATIONAL.41.520
Physical Metallurgy of Modern High Strength Steel Sheets
T. Senuma (2000)
10.2355/ISIJINTERNATIONAL.40.902
Retained Austenite Characteristics and Tensile Properties in a TRIP Type Bainitic Sheet Steel
K. Sugimoto (2000)
10.1007/S11661-001-1027-4
On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels
P. Jacques (2001)
10.1016/S1359-6462(01)01101-0
Kinetics of deformation induced martensitic transformation in a 304 stainless steel
H. C. Shin (2001)
10.2355/ISIJINTERNATIONAL.42.450
Retained austenite characteristics and stretch-flangeability of high-strength low-alloy TRIP type bainitic sheet steels
K. Sugimoto (2002)
10.2355/ISIJINTERNATIONAL.43.433
The Properties of 1 500 MPa Grade Alloy Steel with Carbide Free Bainite/Martensite Mixed Microstructures
D. Liu (2003)
10.1016/S1359-6454(03)00059-4
Carbon partitioning into austenite after martensite transformation
J. Speer (2003)
10.2320/MATERTRANS.44.1900
Nanocrystallization of Steels by Severe Plastic Deformation
M. Umemoto (2003)
10.1299/KIKAIA.69.733
Influence of Retained Austenite, Strain Induced Martensite and Pre-Loaded Stress upon Compressive Residual Stress with Shot Peening Method
H. Eto (2003)
10.1179/026708304225011180
Stability of retained austenite in TRIP-assisted steels
M. Sherif (2004)
10.1016/J.COSSMS.2004.10.002
Structure–properties relationship in TRIP steels containing carbide-free bainite
B. D. Cooman (2004)
10.2355/ISIJINTERNATIONAL.44.1608
Ductility of 0.1-0.6C-1.5Si-1.5Mn Ultra High-strength TRIP-aided Sheet Steels with Bainitic Ferrite Matrix
K. Sugimoto (2004)
10.1016/J.ACTAMAT.2003.12.040
Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning
S. Vercammen (2004)
10.1016/J.COSSMS.2004.09.003
Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation
J. Speer (2004)
10.2355/TETSUTOHAGANE1955.91.2_278
Warm Formability of Ultra High-Strength Low Alloy TRIP-aided Sheet Steels with Bainitic Ferrite Matrix
K. Sugimoto (2005)
10.2320/MATERTRANS.46.1839
The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures
C. Garcia-Mateo (2005)
10.4028/www.scientific.net/MSF.500-501.97
Microalloying of Cold-Formable Multi Phase Steel Grades
W. Bleck (2005)
10.1002/SRIN.200606441
Quench and partitioning steel: a new AHSS concept for automotive anti-intrusion applications
B. D. Cooman (2006)
10.1016/J.MSEA.2006.09.101
Microstructural and mechanical characterization of C–Mn–Al–Si cold-rolled TRIP-aided steel
A. K. Srivastava (2007)
10.1007/S11661-008-9599-X
Deformation-Induced Transformation of Retained Austenite in Transformation Induced Plasticity-Aided Steels: A Thermodynamic Model
M. Mukherjee (2008)
10.1016/J.SCRIPTAMAT.2009.02.062
Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility
D. Raabe (2009)
10.1002/ADEM.200900061
Designing Ultrahigh Strength Steels with Good Ductility by Combining Transformation Induced Plasticity and Martensite Aging
D. Raabe (2009)
10.1179/174328409X453307
Fracture strength and toughness of ultra high strength TRIP aided steels
K. Sugimoto (2009)
10.2355/TETSUTOHAGANE.96.84
Stretch-flangeability of Ultra High-strength Low Alloy TRIP-aided Sheet Steels with Mixed Structure Matrix of Bainitic Ferrite and Martensite
M. Murata (2010)
10.1016/J.JMATPROTEC.2010.07.019
A review on hot stamping
H. Karbasian (2010)
10.2355/ISIJINTERNATIONAL.50.162
Formability of Al–Nb Bearing Ultra High-strength TRIP-aided Sheet Steels with Bainitic Ferrite and/or Martensite Matrix
K. Sugimoto (2010)
10.2355/ISIJINTERNATIONAL.51.685
Excellent Total Mechanical-Properties-Balance of 5% Mn, 30000 MPa% Steel
T. Hanamura (2011)
10.1007/S11661-011-0869-7
Analysis of Microstructure Evolution in Quenching and Partitioning Automotive Sheet Steel
J. Speer (2011)
10.1016/j.actamat.2010.09.042
Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation
O. Dmitrieva (2011)
10.1016/J.COSSMS.2011.04.002
High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships
O. Bouaziz (2011)
10.2355/ISIJINTERNATIONAL.51.137
Effect of Carbon and Manganese on the Quenching and Partitioning Response of CMnSi Steels
E. Moor (2011)
10.4028/www.scientific.net/AMR.409.696
Effects of Hot-Forging Process on Combination of Strength and Toughness in Ultra High-Strength TRIP-Aided Martensitic Steels
J. Kobayashi (2011)
10.9773/SOSEI.53.98
New Hot Stamping Processes of Automobile Lightweight Ultra-High Strength Steel Parts
K. Mori (2012)
10.2355/ISIJINTERNATIONAL.52.1124
Microstructure and Retained Austenite Characteristics of Ultra High-strength TRIP-aided Martensitic Steels
J. Kobayashi (2012)
10.1007/s11661-012-1246-x
Notch-Fatigue Properties of Advanced TRIP-Aided Bainitic Ferrite Steels
Nobuo Yoshikawa (2012)
10.1007/s11661-013-2113-0
Effect of Retained Austenite on the Fracture Toughness of Quenching and Partitioning (Q&P)-Treated Sheet Steels
Riming Wu (2013)
10.2355/ISIJINTERNATIONAL.53.1479
Notch-fatigue Strength of Advanced TRIP-aided Martensitic Steels
J. Kobayashi (2013)
10.1007/s13632-013-0082-8
Quenching and Partitioning Steel Heat Treatment
L. Wang (2013)
10.4028/www.scientific.net/KEM.577-578.97
Fracture Toughness of Advanced TRIP-Aided Martensitic Steels
K. Sugimoto (2013)
10.1007/s11661-013-1882-9
Effects of Microalloying on the Impact Toughness of Ultrahigh-Strength TRIP-Aided Martensitic Steels
J. Kobayashi (2013)
10.2355/TETSUTOHAGANE.100.1481
Formability and productivity improving technology of hot stamping
Takehide Senuma (2014)
10.2472/JSMS.63.662
The Effects of Fine Particle Peening on Surface Residual Stress of a TRIP-Aided Bainitic Ferrite Steel
Masahiro Natori (2014)
10.2355/ISIJINTERNATIONAL.54.1943
Effects of Microalloying on Stretch-flangeability of Ultrahigh-strength TRIP-aided Martensitic Steel Sheets
D. Pham (2014)
10.1016/J.MATCHAR.2014.03.003
Microstructural analysis of martensite constituents in quenching and partitioning steels
M. Santofimia (2014)
10.1007/s11661-014-2708-0
Retained Austenite Stabilization Through Solute Partitioning During Intercritical Annealing in C-, Mn-, Al-, Si-, and Cr-Alloyed Steels
Singon Kang (2014)
10.1002/SRIN.201400585
Impact Toughness of Medium‐Mn Transformation‐Induced Plasticity‐Aided Steels
K. Sugimoto (2015)
10.4028/www.scientific.net/KEM.665.85
Effects of Fine Particle Peening on Fatigue Strength of Transformation-Induced Plasticity (TRIP)-Aided Martensitic Steel
K. Sugimoto (2015)
10.1016/J.MATDES.2015.06.172
Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel
Qian Zhou (2015)
10.1007/s13632-015-0221-5
Microstructure and Mechanical Properties of a TRIP-Aided Martensitic Steel
K. Sugimoto (2015)
10.1002/SRIN.201500038
Tensile Behavior of Intercritically Annealed Ultra‐Fine Grained 8% Mn Multi‐Phase Steel
S. Lee (2015)
10.1002/SRIN.201400577
A Composite Modeling Analysis of the Deformation Behavior of Medium Manganese Steels
R. Rana (2015)
10.1016/S1006-706X(15)30122-9
High Ductility and Toughness of a Micro-duplex Medium-Mn Steel in a Large Temperature Range from −196 °C to 200 °C
Si-lian Chen (2015)
10.1016/J.ACTAMAT.2016.01.059
Kinetics of the partitioning of carbon and substitutional alloying elements during quenching and partitioning (Q&P) processing of medium Mn steel
Eun Jung Seo (2016)
10.1007/s11661-016-3500-0
Fatigue Hardening Behavior of 1.5 GPa Grade Transformation-Induced Plasticity-Aided Martensitic Steel
K. Sugimoto (2016)
10.1016/J.ACTAMAT.2016.04.048
Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel
Eun Jung Seo (2016)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar