Online citations, reference lists, and bibliographies.

Galilei Invariant Molecular Dynamics

C. Jaekel, G. Hörmann
Published 1995 · Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
We construct a model for a chemical reaction in the Heisenberg representation. The time evolution exists in the thermodynamic limit, independent of the particle density and the initial state. In mathematical terms, we establish a C*~dynamical system. Thus we can benefit from general results in algebraic quantum statistical mechanics, showing, for example, that equilibrium states exist. Galilei invariance of our nonrelativistic model is demonstrated by defining it directly on the Galilean space-time manifold, without reference to any coordinate system. PACS 05.30.Fk, 03.70.+ k, ll.10.Cd, 11.15.Tk
This paper references
10.1007/BF00672665
The group of automorphisms of the galilei group
Giuseppe Marmo (1972)
10.1142/S0217751X91001453
GALILEI-INVARIANT QUANTUM FIELD THEORIES WITH PAIR INTERACTIONS: A REVIEW
H. Narnhofer (1991)
10.1063/1.523670
Conformal extensions of the Galilei group and their relation to the Schrödinger group
P. Havas (1978)
10.1007/BF00398332
Asymptotic triviality of the Møller operators in Galilei invariant quantum field theories
C. Jaekel (1991)
10.1007/BF01609483
Symmetry and equilibrium states
H. Araki (1977)
10.1007/BF01646631
States and automorphism groups of operator algebras
R. Herman (1970)
10.1063/1.528683
Nontransititive imprimitivity systems for the Galilei group
Gianni Cassinelli (1990)
10.1103/PhysRevLett.64.1863
Quantum field theories with Galilei-invariant interactions.
Narnhofer (1990)
10.1007/BF00417467
Lorentz invariance vs. temperature in QFT
I. Ojima (1986)
10.2307/1969831
On Unitary ray representations of continuous groups
V. Bargmann (1954)
10.1007/BF01609126
Extension of KMS states and chemical potential
H. Araki (1977)
10.1007/BF01019741
Transitivity and ergodicity of quantum systems
H. Narnhofer (1988)
Theory of Many-Particle Systems
I. P. Bazarov (1989)
10.1103/PhysRevA.26.3646
Adiabatic theorem in quantum statistical mechanics
H. Narnhofer (1982)
10.3929/ethz-a-000093960
On the existence of a local Hamiltonian in the Galilean invariant Lee model
Robert Schrader (1968)
10.1007/BF01647120
Galilean invariant Lee model for all spins and parities
C. Hagen (1971)
Statistical-Mechanical Theory of Irreversible Processes. I
R. Kubo (1957)
10.1007/BF01022834
Mixing properties of quantum systems
H. Narnhofer (1989)
10.1515/9781400865161.5
2. Clifford Algebras and Spin Groups
John W. Morgan (1995)
10.1007/BF01645449
On the interaction picture
M. Guenin (1966)
10.1063/1.523654
Poincaré is a subgroup of Galilei in one space dimension more
E. Corbera Elizalde (1978)
10.1007/BF01645173
Range of forces and broken symmetries in many-body systems
J. Swieca (1967)
10.1007/BF01646342
On the equilibrium states in quantum statistical mechanics
R. Haag (1967)
10.1063/1.523733
The quantum mechanical Poincaré and Galilei groups
U. Cattaneo (1978)
Kommutative Automor phis men und Gleichgewichtszustande , Act
H. Narnhofer (1977)
10.1007/BF01651541
Stability and equilibrium states
R. Haag (1974)
10.1016/0034-4877(70)90003-0
Fibre bundles associated with space-time☆
A. Trautman (1970)
10.1007/BF01705375
Existence of ground states and KMS states for approximately inner dynamics
Robert T. Powers (1975)
10.1007/BF01645427
Galilean quantum field theories and a ghostless Lee model
J. Lévy-leblond (1967)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar