Online citations, reference lists, and bibliographies.
← Back to Search

The Role Of The Prostacyclin-thromboxane System In Cerebral Vasospasm Following Induced Subarachnoid Hemorrhage In The Rabbit

Richard C. Chan, Felix A. Durity, Gordon B. Thompson, Robert A. Nugent, Marie Kendall

Save to my Library
Download PDF
Analyze on Scholarcy
Share
✓ Subarachnoid hemorrhage (SAH) was induced in 50 rabbits by injecting 1.25 cc/kg of autologous, well heparinized, fresh arterial blood into the cisterna magna, followed by suspending the animals in a head-down position at 30° for 15 minutes. The animals were evenly divided into five groups: a control group, or groups receiving post-SAH prostacyclin (PGI2), carbacyclin, thromboxane A2 (TXA2) synthetase inhibitor (OKY-1581), or nutralipid. Radiographic vertebrobasilar arterial spasm was demonstrated on the 3rd day post-SAH in the control animals. This was decreased in the prostacyclin and the carbacyclin groups and was absent in the OKY-1581 and the nutralipid groups. Cerebral blood flow (CBF) measurements on the 4th day post-SAH using the xenon-133 technique failed to reveal any significant difference between the prostacyclin, the carbacyclin, and the control groups, but flows in the nutralipid and the OKY-1581 groups were significantly higher. There was a good correlation between the clinical status and the CBF. Intracytoplasmic vacuolation and detachment of the vascular endothelium, seen ultrastructurally, may account for the impaired synthesis of prostacyclin. Exogenous prostacyclin and carbacyclin decreased vasospasm but failed to improve cerebral perfusion. OKY-1581 blocked the synthesis of the potent vasoconstrictor, TXA2, which is not only formed during platelet aggregation but also induces platelet aggregation. Nutralipid contains linolenic acid, a precursor of eicosapentaenoic acid (EPA), which is more potent in inhibiting platelet aggregation and in blocking TXA2 production. The various fatty acid constituents of nutralipid bind to albumin and thereby shorten the half-life of TXA2.