Online citations, reference lists, and bibliographies.
← Back to Search

Magnetic Nanoparticles For Nanomedicine

Maria Hepel

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The field of nanomedicine has recently emerged as a product of the expansion of a range of nanotechnologies into biomedical science, pharmacology and clinical practice. Due to the unique properties of nanoparticles and the related nanostructures, their applications to medical diagnostics, imaging, controlled drug and gene delivery, monitoring of therapeutic outcomes, and aiding in medical interventions, provide a new perspective for challenging problems in such demanding issues as those involved in the treatment of cancer or debilitating neurological diseases. In this review, we evaluate the role and contributions that the applications of magnetic nanoparticles (MNPs) have made to various aspects of nanomedicine, including the newest magnetic particle imaging (MPI) technology allowing for outstanding spatial and temporal resolution that enables targeted contrast enhancement and real-time assistance during medical interventions. We also evaluate the applications of MNPs to the development of targeted drug delivery systems with magnetic field guidance/focusing and controlled drug release that mitigate chemotherapeutic drugs’ side effects and damage to healthy cells. These systems enable tackling of multiple drug resistance which develops in cancer cells during chemotherapeutic treatment. Furthermore, the progress in development of ROS- and heat-generating magnetic nanocarriers and magneto-mechanical cancer cell destruction, induced by an external magnetic field, is also discussed. The crucial roles of MNPs in the development of biosensors and microfluidic paper array devices (µPADs) for the detection of cancer biomarkers and circulating tumor cells (CTCs) are also assessed. Future challenges concerning the role and contributions of MNPs to the progress in nanomedicine have been outlined.