Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Lipschitz Metric For The Camassa-Holm Equation On The Line

K. Grunert, H. Holden, X. Raynaud
Published 2010 · Mathematics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
We study stability of solutions of the Cauchy problem on the line for the Camassa-Holm equation $u_t-u_{xxt}+3uu_x-2u_xu_{xx}-uu_{xxx}=0$ with initial data $u_0$. In particular, we derive a new Lipschitz metric $d_\D$ with the property that for two solutions $u$ and $v$ of the equation we have $d_\D(u(t),v(t))\le e^{Ct} d_\D(u_0,v_0)$. The relationship between this metric and the usual norms in $H^1$ and $L^\infty$ is clarified. The method extends to the generalized hyperelastic-rod equation $u_t-u_{xxt}+f(u)_x-f(u)_{xxx}+(g(u)+\frac12 f"(u)(u_x)^2)_x=0$ (for $f$ without inflection points).
This paper references
10.1007/S00205-006-0010-Z
Global Conservative Solutions of the Camassa–Holm Equation
A. Bressan (2007)
10.1080/03605300601088674
Global Conservative Solutions of the Camassa–Holm Equation—A Lagrangian Point of View
H. Holden (2007)
10.1007/BF02392586
Wave breaking for nonlinear nonlocal shallow water equations
A. Constantin (1998)
Global existence and blow-up for a shallow water equation, Ann
A. Constantin (1998)
Bressan and A . Constantin , Global conservative solutions of the Camassa – Holm equation
H. Holden Bressan (2007)
10.1007/PL00004793
On the blow-up rate and the blow-up set of breaking waves for a shallow water equation
A. Constantin (2000)
10.1016/S0165-2125(98)00014-6
Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods
H. Dai (1998)
10.1007/s00205-008-0128-2
The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations
A. Constantin (2009)
A new integrable shallow water
R. Camassa (1994)
10.1016/J.JDE.2006.09.007
Global conservative solutions of the generalized hyperelastic-rod wave equation ✩
H. Holden (2007)
10.1007/BF01170373
Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod
H. Dai (1998)
10.1142/S0219891607001045
GLOBAL CONSERVATIVE MULTIPEAKON SOLUTIONS OF THE CAMASSA–HOLM EQUATION
H. Holden (2007)
10.1016/S0065-2156(08)70254-0
A New Integrable Shallow Water Equation
R. Camassa (1994)
Global existence and blow-up for a shallow water equation
A. Constantin (1998)
10.1103/PHYSREVLETT.71.1661
An integrable shallow water equation with peaked solitons.
Camassa (1993)
10.1016/J.JDE.2010.07.006
Lipschitz metric for the periodic Camassa–Holm equation☆
K. Grunert (2010)
10.1098/rspa.2000.0520
Solitary shock waves and other travelling waves in a general compressible hyperelastic rod
H. Dai (2000)
10.1016/J.MATPUR.2010.02.005
Lipschitz metric for the Hunter–Saxton equation☆
A. Bressan (2009)



This paper is referenced by
10.2969/aspm/08110197
PROPERTIES OF SOLUTIONS TO THE CAMASSA-HOLM EQUATION ON THE LINE IN A CLASS CONTAINING THE PEAKONS
F. Linares (2016)
10.1090/proc/15059
Unique continuation properties for solutions to the Camassa-Holm equation and related models
F. Linares (2020)
10.3934/DCDS.2015.35.25
Uniqueness of Conservative Solutions to the Camassa-Holm Equation via Characteristics
A. Bressan (2014)
10.1016/J.GEOMPHYS.2019.04.003
Geometric approach on the global conservative solutions of the Camassa–Holm equation
J. Lee (2019)
10.1142/S0219891618500182
Existence and Lipschitz stability for α-dissipative solutions of the two-component Hunter–Saxton system
K. Grunert (2016)
10.1142/S0219530516500226
Lipschitz metric for the modified two-component Camassa-Holm system
Chunxia Guan (2015)
10.1090/pspum/087/01434
PERIODIC CONSERVATIVE SOLUTIONS FOR THE TWO-COMPONENT CAMASSA{HOLM SYSTEM
K. Grunert (2013)
10.1016/J.NONRWA.2013.12.001
Global dissipative solutions of the two-component Camassa-Holm system for initial data with nonvanishing asymptotics
K. Grunert (2013)
A Finsler type Lipschitz optimal transport metric for a quasilinear wave equation
H. Cai (2020)
10.1016/J.JDE.2016.10.036
Transfer of energy in Camassa-Holm and related models by use of nonunique characteristics
Grzegorz Jamróz (2016)
Unique Continuation Properties for solutions to the Camassa-Holm equation and other non-local equations
F. Linares (2019)
10.1016/j.aim.2012.12.006
On the isospectral problem of the dispersionless Camassa–Holm equation☆
Jonathan Eckhardt (2013)
10.1007/S00574-016-0129-Y
Uniqueness of conservative solutions for nonlinear wave equations via characteristics
A. Bressan (2016)
10.4310/MAA.2016.V23.N3.A1
A Lipschitz metric for conservative solutions of the two-component Hunter--Saxton system
Anders Nordli (2015)
10.1007/978-3-319-89800-1_7
On the Equivalence of Eulerian and Lagrangian Variables for the Two-Component Camassa–Holm System
M. Grasmair (2018)
10.1016/J.JMAA.2017.02.018
Lipschitz metric for the periodic second-order Camassa–Holm equation
Danping Ding (2017)
Uniqueness of conservative solutions to a one-dimensional general quasilinear wave equation through variational principle
H. Cai (2020)
10.1512/IUMJ.2018.67.7510
Existence and uniqueness of the global conservative weak solutions for the integrable Novikov equation
Geng Chen (2015)
10.1017/FMS.2014.29
A continuous interpolation between conservative and dissipative solutions for the two-component Camassa-Holm system
K. Grunert (2014)
10.1007/S00028-018-0430-X
Uniqueness of global conservative weak solutions for the modified two-component Camassa–Holm system
Chunxia Guan (2018)
10.3934/DCDS.2012.32.4209
Global conservative solutions of the Camassa-Holm equation for initial data nonvanishing asymptotics
K. Grunert (2011)
10.1007/S00205-017-1155-7
Lipschitz Metrics for a Class of Nonlinear Wave Equations
A. Bressan (2015)
10.1080/03605302.2012.683505
Global Solutions for the Two-Component Camassa–Holm System
K. Grunert (2011)
Global Lagrangian solutions of the Camassa-Holm equation
J. Lee (2017)
10.1142/S0219891616500119
The general peakon–antipeakon solution for the Camassa–Holm equation
K. Grunert (2015)
10.1142/S0219891617500242
On measures of accretion and dissipation for solutions of the Camassa-Holm equation
Grzegorz Jamróz (2016)
Lipschitz metric for the two-component Camassa--Holm system
Grunert Katrin (2013)
GLOBAL LAGRANGIAN SOLUTIONS OF THE CAMASSA-HOLM EQUATION
J. Lee (2019)
10.1016/J.ANIHPC.2015.12.004
Generic regularity of conservative solutions to a nonlinear wave equation
A. Bressan (2015)
10.1007/s00205-018-1234-4
Lipschitz Metric for the Novikov Equation
H. Cai (2016)
10.1017/fms.2020.22
A Lipschitz metric for the Camassa--Holm equation
J. A. Carrillo (2019)
Semantic Scholar Logo Some data provided by SemanticScholar