Online citations, reference lists, and bibliographies.
← Back to Search

What Happens When Replication And Transcription Complexes Collide?

Richard T Pomerantz, M. O'Donnell
Published 2010 · Medicine, Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
The arrest of replication forks due to collisions with transcription complexes leads to genomic instability and cell death. Mechanisms that promote the progression of replication forks past transcription complexes are therefore essential for propagation and preservation of the genome. Recent studies of E. coli directly investigate the consequences of collisions of the replisome with RNAP polymerase (RNAP) in vitro and provide novel mechanisms by which these encounters may be resolved. Additionally, recent in vivo and in vitro studies support the longstanding hypothesis that auxiliary DNA helicases promote replication through roadblocks such as transcription complexes. Here we review past and recent advances that formulate our current understanding of how the bacterial replisome deals with transcription complexes along the path of chromosome duplication.
This paper references
10.1128/MCB.25.3.888-895.2005
Mechanisms of Transcription-Replication Collisions in Bacteria
Ekaterina V. Mirkin (2005)
10.1016/j.molcel.2009.05.022
Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae.
A. Azvolinsky (2009)
10.1101/GR.6533407
Human gene organization driven by the coordination of replication and transcription.
M. Huvet (2007)
Discontinuous or semidiscontinuous DNA replication in Escherichia coli ?
TC Wang (2005)
10.1073/pnas.0608999104
Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis
J. Wang (2007)
10.1038/ncb1110-1122
Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription
Sandie Tuduri (2010)
10.1093/bioinformatics/bth317
Transcription/replication collisions cause bacterial transcription units to be longer on the leading strand of replication
N. Omont (2004)
10.1016/J.MOLCEL.2005.08.011
A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously.
Chiara Indiani (2005)
10.1016/j.molcel.2009.11.009
Rep Provides a Second Motor at the Replisome to Promote Duplication of Protein-Bound DNA
C. P. Guy (2009)
10.1038/366033A0
The DNA replication fork can pass RNA polymerase without displacing the nascent transcript
B. Liu (1993)
10.1093/NAR/20.24.6713
Bound Lac repressor protein differentially inhibits the unwinding reactions catalyzed by DNA helicases.
J. E. Yancey-Wrona (1992)
10.1016/S0092-8674(00)80621-2
Modulation of RNA Polymerase by (p)ppGpp Reveals a RecG-Dependent Mechanism for Replication Fork Progression
P. McGlynn (2000)
10.1016/J.DNAREP.2007.02.014
Non-replicative helicases at the replication fork.
R. Heller (2007)
10.1093/emboj/cdg452
Transcription through the roadblocks: the role of RNA polymerase cooperation
V. Epshtein (2003)
10.1016/S0092-8674(02)00769-9
E. coli Transcription Repair Coupling Factor (Mfd Protein) Rescues Arrested Complexes by Promoting Forward Translocation
J. Park (2002)
10.1371/journal.pgen.1000810
Co-Orientation of Replication and Transcription Preserves Genome Integrity
Anjana Srivatsan (2010)
10.1126/science.7855590
Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex
B. Liu (1995)
10.1038/sj.emboj.7601804
UvrD controls the access of recombination proteins to blocked replication forks
Roxane Lestini (2007)
10.1128/MMBR.59.4.623-645.1995
Control of rRNA transcription in Escherichia coli.
C. Condon (1995)
10.1046/j.1365-2443.2002.00563.x
Transcription termination and anti‐termination in E. coli
E. Nudler (2002)
10.1038/sj.emboj.7600602
Impairment of replication fork progression mediates RNA polII transcription‐associated recombination
F. Prado (2005)
Studies on the functions of DNA helicase I and DNA helicase II of Escherichia coli.
M. Klinkert (1980)
10.1007/BF00332704
Slow excision repair in an mfd mutant of Escherichia coli B/r
D. George (2004)
10.1073/PNAS.0601127103
Transcription regulatory elements are punctuation marks for DNA replication.
Ekaterina V. Mirkin (2006)
10.1111/j.1365-2958.2006.05382.x
The Escherichia coli UvrD helicase is essential for Tus removal during recombination‐dependent replication restart from Ter sites
V. Bidnenko (2006)
Mechanisms of transcriptionreplication collisions in bacteria
EV Mirkin (2005)
10.1038/nrm2549
Transcription-coupled DNA repair: two decades of progress and surprises
P. Hanawalt (2008)
10.1093/NAR/GKG868
A DNA translocation motif in the bacterial transcription--repair coupling factor, Mfd.
A. Chambers (2003)
10.1038/nature07527
The replisome uses mRNA as a primer after colliding with RNA polymerase
Richard T Pomerantz (2008)
10.1016/J.DNAREP.2007.02.017
Avoiding and resolving conflicts between DNA replication and transcription.
Christian J Rudolph (2007)
10.1016/J.SBI.2007.01.005
The bacterial transcription repair coupling factor.
A. Deaconescu (2007)
10.3791/1919
Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase
Richard T Pomerantz (2010)
10.1007/BF00329669
The Escherichia coli rep mutation. X. Consequences of increased and decreased Rep protein levels
J. Colasanti (2004)
10.1016/J.MOLCEL.2005.10.001
Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination.
M. McIlwraith (2005)
10.1038/emboj.2009.308
The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo
Hasna Boubakri (2010)
10.1007/BF02173004
Transcription-induced deletions in plasmid vectors: M13 DNA replication as a source of instability
D. Vilette (2005)
10.1126/SCIENCE.1280856
Functional transcription elongation complexes from synthetic RNA-DNA bubble duplexes.
S. Daube (1992)
10.1046/j.1365-2958.2001.02718.x
Replication arrests during a single round of replication of the Escherichia coli chromosome in the absence of DnaC activity
S. Maisnier-Patin (2001)
10.1016/J.MIB.2004.02.014
Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination.
J. Roberts (2004)
10.1016/J.MOLCEL.2005.06.004
RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription.
Brigitte W. Trautinger (2005)
10.1371/journal.pgen.0030226
Chromosome Structuring Limits Genome Plasticity in Escherichia coli
Emilie Esnault (2007)
10.1016/J.GENE.2004.06.056
Genometric analyses of the organization of circular chromosomes: a universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication.
Lionel Guy (2004)
10.1016/S0022-2836(75)80025-8
The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains.
H. Lane (1975)
10.1074/jbc.M507224200
Unwinding of the Nascent Lagging Strand by Rep and PriA Enables the Direct Restart of Stalled Replication Forks*[boxs]
R. Heller (2005)
10.1038/sj.embor.7400940
Replication fork barriers: pausing for a break or stalling for time?
K. Labib (2007)
10.1038/nrm2058
Replisome assembly and the direct restart of stalled replication forks
R. Heller (2006)
10.1146/ANNUREV.GENET.38.072902.091347
rRNA transcription in Escherichia coli.
Brian J. Paul (2004)
10.1126/SCIENCE.1455232
Consequences of replication fork movement through transcription units in vivo.
S. French (1992)
10.1126/SCIENCE.7801121
Transcription-coupled repair and human disease.
P. Hanawalt (1994)
10.1128/JB.187.5.1632-1638.2005
Transcriptional polarity in rRNA operons of Escherichia coli nusA and nusB mutant strains.
S. Quan (2005)
10.1016/0092-8674(83)90141-1
Properties of the T4 bacteriophage DNA replication apparatus: The T4 dda DNA helicase is required to pass a bound RNA polymerase molecule
P. Bedinger (1983)
DNA Replication. DNA Replication New York 1992; 2 Ed 931
A Kornberg (1992)



This paper is referenced by
10.1093/nar/gkt196
Mitochondrial DNA replication proceeds via a ‘bootlace’ mechanism involving the incorporation of processed transcripts
A. Reyes (2013)
Maintenance of glutamate homeostasis in Bacillus subtilis by complex regulatory systems and genomic adaptation
Miriam Dormeyer (2017)
10.1016/j.tig.2019.10.004
Asymmetric Histone Inheritance in Asymmetrically Dividing Stem Cells.
M. Wooten (2019)
10.1016/j.dnarep.2019.102659
The enigmatic role of Mfd in replication-transcription conflicts in bacteria
Mark Ragheb (2019)
Elucidating the Role of Senataxin During HSV-1 Infection
Braeden Cowbrough (2018)
10.1016/j.dnarep.2018.08.009
R-loop generation during transcription: Formation, processing and cellular outcomes.
B. P. Belotserkovskii (2018)
Herpes Simplex Virus 1 DNA replication and its role in recombination and transcription
Ka-Wei Tang (2015)
Transkriptsiooni ja transkriptsiooniga seotud DNA reparatsiooni mõju mutatsiooniprotsessidele bakteris Pseudomonas putida
M. Kivisaar (2013)
TARTU ÜLIKOOL LOODUS- JA TEHNOLOOGIATEADUSKOND MOLEKULAAR- JA RAKUBIOLOOGIA INSTITUUT GENEETIKA ÕPPETOOL
Tanel Ilmjärv (2013)
10.1007/978-3-319-10533-8
DNA Replication Control in Microbial Cell Factories
Monika Glinkowska (2015)
10.1038/nrmicro2800
Replication–transcription conflicts in bacteria
H. Merrikh (2012)
10.1126/science.aaa0986
Replication-transcription switch in human mitochondria
K. Agaronyan (2015)
10.1038/ncomms11207
3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression
D. Loeb (2016)
10.1016/j.febslet.2014.05.026
In vivo single‐molecule imaging of bacterial DNA replication, transcription, and repair
Mathew Stracy (2014)
10.1111/php.12675
Mfd Protein and Transcription–Repair Coupling in Escherichia coli
C. Selby (2017)
10.1016/j.cub.2013.01.054
Chromosome Biology: Conflict Management for Replication and Transcription
James M. Dewar (2013)
10.3389/fmicb.2016.00184
Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria
T. Garcia-Garcia (2016)
10.1007/s00412-013-0398-9
Impediments to replication fork movement: stabilisation, reactivation and genome instability
S. Lambert (2013)
10.1038/s41594-019-0269-z
Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement
M. Wooten (2019)
Genetic stability in the hyperthermophilic archaeon Sulfolobus acidocaldarius
Xinyu Cong (2015)
10.3389/fmicb.2017.00453
Xer Site Specific Recombination: Double and Single Recombinase Systems
F. Castillo (2017)
10.1038/nature09758
Co-directional replication-transcription conflicts lead to replication restart
H. Merrikh (2011)
10.1101/cshperspect.a012971
Human mitochondrial DNA replication.
I. Holt (2012)
10.13039/501100003339
Studies on the effects of persistent RNA priming on DNA replication and genomic stability
Ruth Stuckey (2014)
10.25781/KAUST-97626
Characterizing the Final Steps of Chromosomal Replication at the Single-molecule Level in the Model System Escherichia coli
Mohamed M. ElShenawy (2015)
10.4161/trns.2.3.15908
The replication-transcription conflict
P. Soultanas (2011)
10.1186/scrt67
In silico tandem affinity purification refines an Oct4 interaction list
C. Cheong (2011)
10.1038/s41467-018-04702-x
Helicase promotes replication re-initiation from an RNA transcript
B. Sun (2018)
10.1002/bies.201400052
Unique features of DNA replication in mitochondria: A functional and evolutionary perspective
I. Holt (2014)
10.1371/journal.pgen.1005975
Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries
Tal Hershko-Shalev (2016)
10.1016/j.cub.2013.01.035
Causality: Perceiving the Causes of Visual Events
Alan Johnston (2013)
TARTU ÜLIKOOL LOODUS- JA TEHNOLOOGIATEADUSKOND MOLEKULAAR- JA RAKUBIOLOOGIA INSTITUUT
Helis Guske (2014)
See more
Semantic Scholar Logo Some data provided by SemanticScholar