Online citations, reference lists, and bibliographies.

Two-sided Norm Estimates For Bergman-type Projections With An Asymptotically Sharp Lower Bound

Congwen Liu, Antti Perala, Lifang Zhou
Published 2017 · Mathematics
Cite This
Download PDF
Analyze on Scholarcy
Share
We obtain new two-sided norm estimates for the family of Bergman-type projections arising from the standard weights $(1-|z|^2)^{\alpha}$ where $\alpha>-1$. As $\alpha\to -1$, the lower bound is sharp in the sense that it asymptotically agrees with the norm of the Riesz projection. The upper bound is estimated in terms of the maximal Bergman projection, whose exact operator norm we calculate. The results provide evidence towards a conjecture that was posed very recently by the first author.
This paper references
10.1006/jfan.2000.3616
Best Constants for the Riesz Projection
Brian Hollenbeck (2000)
Norm of Berezin transform on L p space
M. Vuorinen
10.1512/iumj.1975.24.24044
Projections on Spaces of Holomorphic Functions in Balls
Frank Forelli (1974)
10.1007/S00013-014-0624-6
Sharp constant for the Bergman projection onto the minimal Möbius invariant space
Antti Perälä (2014)
10.2307/2307622
Higher Transcendental Functions
Bateman Manuscript (1981)
10.2140/pjm.1993.160.1
Inequalities for quasiconformal mappings in space
Glen Douglas Anderson (1993)
10.1080/00029890.2006.11920367
Monotonicity Rules in Calculus
Glen Douglas Anderson (2006)
10.1007/978-1-4612-0497-8
Theory of Bergman Spaces
Haakan Per Jan Hedenmalm (2000)
10.5186/AASFM.2012.3722
ON THE OPTIMAL CONSTANT FOR THE BERGMAN PROJECTION ONTO THE BLOCH SPACE
Antti Perälä (2012)
The general form of a linear functional in H p , ( Russian )
V. I. Judovič (2013)
Fuction theory in the unit ball of C
W. Rudin (1980)
10.1016/J.JFA.2014.09.027
Sharp Forelli–Rudin estimates and the norm of the Bergman projection
Congwen Liu (2015)
10.1007/S11854-008-0014-8
Norm of Berezin transformon Lp space
Milutin R. Dostanic (2008)
10.7146/MATH.SCAND.A-18007
Norm of the Bergman projection
David Kalaj (2012)
10.1007/978-1-4612-0497-8_1
The Bergman Spaces
Haakan Per Jan Hedenmalm (2000)
10.1007/978-1-4613-8098-6
Function Theory in the Unit Ball of ℂn
Walter Rudin (1980)
10.5186/AASFM.2013.3850
Bloch space and the norm of the Bergman projection
Antti Perälä (2013)
10.1007/0-387-27539-8
Spaces of Holomorphic Functions in the Unit Ball
Kehe Zhu (2005)
10.1007/BF01085405
The general form of a linear functional and a criteria for a best approximation polynomial in a space with mixed integral metric
Georgy S. Smirnov (1973)
10.1007/S10587-008-0036-5
Two sided norm estimate of the Bergman projection on Lp spaces
Milutin R. Dostanić (2008)
10.1007/S00020-013-2047-3
Some Estimates for the Norm of the Bergman Projection on Besov Spaces
Djordjije Vujadinović (2013)
10.1090/surv/138
Operator theory in function spaces
Kehe Zhu (1990)
10.1007/978-1-4939-1194-3
Classical Fourier Analysis
Loukas Grafakos (2008)
10.1090/conm/455/08853
Analytic properties of Besov spaces via Bergman projections
H. Turgay Kaptanoglu (2008)
A sharp norm estimate of the Bergman projection in L spaces
K. Zhu (2006)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar