Online citations, reference lists, and bibliographies.
← Back to Search

Thiol Reduction And Cardiolipin Improve Complex I Activity And Free Radical Production In Liver Mitochondria Of Streptozotocin-Induced Diabetic Rats

Manjury Jatziry Hernández-Esparza, Claudia Guadalupe Flores-Ledesma, Rocío Montoya-Pérez, Elizabeth Calderón-Cortés, Alfredo Saavedra-Molina, Alain Raimundo Rodríguez-Orozco, Christian Cortés-Rojo

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Mitochondrial reactive oxygen species (ROS) are involved in diabetic liver disease development. Diabetes impairs complex I activity and increases ROS production in liver mitochondria. The complex I produces ROS in forward electron transfer (FET) or in reverse electron transfer (RET) modes depending on the site of electron transfer blocking and the availability of respiratory substrates. Complex I activity depends on the phospholipid cardiolipin and the redox state of reactive thiols in the enzyme. Neither the underlying factors leading to complex I dysfunction nor the mode of ROS production have been elucidated in liver mitochondria in diabetes. We tested in liver mitochondria from streptozotocin (STZ) -induced diabetic rats if the addition of cardiolipin or β-mercaptoethanol, a thiol reducing agent, recovers complex I activity and decreases ROS production with substrates inducing ROS production in FET or RET modes. Decreased complex I activity and enhanced ROS generation in FET mode was detected in mitochondria from diabetic rats. Complex I activity was fully restored with the combined treatment with cardiolipin plus β-mercaptoethanol, which also abated ROS generation in FET mode. This suggest that therapies restoring cardiolipin and reducing mitochondrial thiols might be useful to counteract impaired complex I activity and excessive ROS production in liver mitochondria in diabetes.